
1

A Systematic Literature Review of Machine

Learning Approaches for Migrating Monolithic

Systems to Microservices
Imen Trabelsi, Brahim Mahmoudi, Jean Baptiste Minani, Naouel Moha, and Yann-Gaël Guéhéneuc

Abstract—Scalability and maintainability challenges in mono-
lithic systems have led to the adoption of microservices, which
divide systems into smaller, independent services. However, mi-
grating existing monolithic systems to microservices is a complex
and resource-intensive task, which can benefit from machine
learning (ML) to automate some of its phases. Choosing the right
ML approach for migration remains challenging for practition-
ers. Previous works studied separately the objectives, artifacts,
techniques, tools, and benefits and challenges of migrating
monolithic systems to microservices. No work has yet investigated
systematically existing ML approaches for this migration to
understand the automated migration phases, inputs used, ML
techniques applied, evaluation processes followed, and challenges
encountered. We present a systematic literature review (SLR) that
aggregates, synthesises, and discusses the approaches and results
of 81 primary studies (PSs) published between 2015 and 2024.
We followed the Preferred Reporting Items for Systematic Review
and Meta-Analysis (PRISMA) statement to report our findings
and answer our research questions (RQs). We extract and analyse
data from these PSs to answer our RQs. We synthesise the
findings in the form of a classification that shows the usage of
ML techniques in migrating monolithic systems to microservices.
The findings reveal that some phases of the migration process,
such as monitoring and service identification, are well-studied,
while others, like packaging microservices, remain unexplored.
Additionally, the findings highlight key challenges, including
limited data availability, scalability and complexity constraints,
insufficient tool support, and the absence of standardized bench-
marking, emphasizing the need for more holistic solutions.

Index Terms—Systematic Literature Review, Microservices,
Machine Learning, Migration

I. INTRODUCTION

As software systems evolve, they often grow in size and

complexity due to the continuous addition of new functionali-

ties. This growth frequently results in tightly coupled compo-

nents with diminished cohesion, leading to architectural and

operational challenges that impede scalability, maintainability,

Imen Trabelsi is with the Department of Computer Science, École de
Technologie Supérieure (ÉTS) – Université du Québec, Canada
E-mail: iman.trabelssi@gmail.com

Brahim Mahmoudi is with the Department of Computer Science, École de
Technologie Supérieure (ÉTS) – Université du Québec, Canada
E-mail: brahim.mahmoudi.1@ens.etsmtl.ca

Jean Baptiste Minani is with the Department of Computer Science and
Software Engineering, Concordia University, Canada
E-mail: baptiste2k8@gmail.com

Naouel Moha is with the Department of Computer Science, École de
Technologie Supérieure (ÉTS) – Université du Québec, Canada
E-mail: naouel.moha@etsmtl.ca

Yann-Gaël Guéhéneuc is with the Department of Computer Science and
Software Engineering, Concordia University, Canada
E-mail: yann-gael.gueheneuc@concordia.ca

and deployment. [1]. Traditionally, such systems have been

built using monolithic architectures, where functionality is

centralised within large, interconnected components [2]. While

this architecture was widely adopted in the past, the increasing

demand for flexibility and faster release cycles has revealed

its inherent limitations [3].

In response to these limitations, microservice architecture

has emerged as a solution to divide monolithic systems into

or build new systems as smaller, independent services [4]. This

division enables improved scalability, faster deployment, and

more efficient maintenance, making microservices an attractive

alternative for modern software development and evolution [5].

However, migrating existing monolithic systems to a mi-

croservices architecture remains a complex and resource-

intensive task [6]. It involves identifying service boundaries

and packaging them into self-contained microservices with de-

fined APIs. Effective migration further requires robust strate-

gies for deploying microservices and guaranteeing their scala-

bility, security, and fault tolerance. Additionally, continuous

monitoring is essential to ensure optimal functionality and

maintain the system’s operational health.

While many approaches have been proposed to address the

various phases of migrating monolithic systems to microser-

vices, such as heuristic-based methods and domain-driven

design, these techniques often require manual intervention

and lack adaptability across different systems [7]. Recent

advancements in machine learning (ML) offer a promising

avenue to tackle these challenges, including identifying ser-

vice boundaries, analysing interdependencies, and predicting

failure. ML techniques excel at processing large and complex

datasets, uncovering patterns, and supporting decision-making

processes that are otherwise difficult to achieve with tradi-

tional approaches. For example, ML can assist in automating

repetitive and error-prone tasks, such as clustering related

components or optimising deployment strategies, potentially

reducing migration time and improving accuracy and con-

sistency [8]. Although business process (BP) analysis and

modernisation are often crucial first steps in practice, most

ML-based studies focus on migration tasks involving source

code or system architecture. A few works leverage business

process models as input, but typically assume these models

are already available. The automation of BP discovery and

refactoring prior to migration remains largely unexplored and

presents a valuable opportunity for future research using NLP,

process mining, or large language models.

This systematic literature review (SLR) aims to explore

2

the role of ML in this domain by addressing key research

questions, such as the phases of migration it automates, the

characteristics of the input data it leverages, the types of

ML approaches applied, how these approaches are evaluated,

and the challenges faced by researchers. By answering these

questions, this study seeks to provide a comprehensive under-

standing of the current state of ML-based migration techniques

and identify opportunities for future research.

Overall, the findings suggest that while certain phases of

the migration process from monolithic systems to microser-

vices, such as monitoring and service identification, have

been extensively studied, other phases remain in their early

stages of exploration [9]. Notably, there is a significant gap in

approaches specifically designed for the later stages of the mi-

gration process, including packaging microservices, generating

the necessary code for microservice APIs, and implementing

design patterns critical to their operation. Despite the progress

made in some phases like identification, deployment and

monitoring, other phases like pre-migration and packaging

are not treated. We also found that the current approaches

face several challenges that hinder their adoption in practical

scenarios. These challenges include the insufficient availability

of high-quality data, which is essential for training reliable

machine learning models, as well as scalability and complexity

concerns that restrict the applicability of these methods to

large-scale and real-world systems [10]. Furthermore, many

existing techniques lack tool support, making them difficult

to implement effectively in the industry. The absence of stan-

dardised metrics, datasets, and baselines further complicates

the evaluation and comparison of these approaches, limiting

the ability to measure progress and identify best practices [11].

While several studies have explored specific aspects of

microservice migration and the associated challenges, to the

best of our knowledge, no prior work investigated systemati-

cally existing ML approaches for this migration to understand

the automated phases, used inputs, applied ML techniques,

followed evaluation processes, and encountered challenges.

Motivated by this gap, the goal of this study is to understand

how machine learning is used to migrate monolithic systems

to microservices. This leads to our main research question:

How is machine learning used to migrate monolithic systems

to microservices?

From this main question, we derive the following research

questions (RQs):

➊ RQ1: Which migration phases are automated by ML?

➋ RQ2: How are ML migration inputs characterised in

terms of type, granularity, source, and preprocessing?

➌ RQ3: What ML techniques and learning paradigms are

applied in migration approaches?

➍ RQ4: How are ML-based migration approaches evaluated

with respect to metrics, benchmarks, tools, and success

criteria?

➎ RQ5: What challenges arise in using ML approaches?

To answer these research questions, we followed the up-

dated Preferred Reporting Items for Systematic Review and

Meta-Analysis (PRISMA) statement for reporting systematic

reviews [12]. We screened 2,301 potentially relevant studies

from eight digital libraries, considering publications between

2015 and 2024. Using inclusion and exclusion criteria along

with snowball sampling, we assessed the quality of the primary

studies based on their design, methodology, analysis, and

conclusions. We retained a total of 81 PSs for analysis.

The primary contribution of this study is the development

of a comprehensive understanding of how ML can be used to

support the migration of monolithic systems to microservices.

This is achieved through the following key contributions:

➊ A systematic analysis of the migration phases automated

using ML techniques, identifying gaps in automation

across the migration lifecycle (RQ1).

➋ An organised synthesis of the types of inputs used in ML-

driven migration, including their granularity, sources and

how it is preprocessed, forming a basis for understanding

the input usage in migration (RQ2).

➌ A detailed analysis of machine learning techniques em-

ployed for migration, highlighting commonly used mod-

els, emerging techniques, and their features (RQ3).

➍ An exploration of evaluation practices for ML-based mi-

gration approaches, identifying common metrics, bench-

marking, and success criteria (RQ4).

➎ A discussion of the challenges encountered when apply-

ing ML for migration, including scalability, data avail-

ability, and the interpretability of models, along with

directions for future research (RQ5).

➏ A set of recommendations for practitioners and re-

searchers, derived from the insights gathered, to help

address the challenges of applying ML techniques during

monolithic-to-microservices migration.

We organise the remainder of this paper as follows. Section

II presents the background and related work on monolithic

to microservices migration. Section III describes the SLR

methodology used and provides an overview of the analysis

process. Section V focuses on phases of migration that are

currently automated using ML. Section VI examines the types

of data collected and processed as inputs for ML during

migration. Section VII identifies the ML techniques applied

in this context. Section VIII discusses how ML-based ap-

proaches are evaluated for migration. Section IX investigates

the challenges and limitations of applying ML to migration.

Section X discusses the observations and recommendations.

Section XI outlines the potential threats to the validity of

our study. Finally, Section XII summarises the findings and

suggests directions for future research.

II. RELATED WORK

The migration of monolithic applications to microservices

has gained significant attention in recent years due to its

potential to improve scalability, flexibility, and maintainability

in software systems. Several studies have explored various

aspects of this migration, ranging from decomposition frame-

works to the challenges faced during the migration. This

section presents an overview of the most relevant works,

focusing on decomposition frameworks, migration strategies,

and the challenges associated with microservice adoption.

Table I summarises the existing studies closely related to

this SLR. Following established frameworks in the litera-

ture [16], [18], [22], the migration process considered in this

3

TABLE I: Closely Related Works

Study Focus Year Method RQs

[13]
Use of AI techniques
for improving any qual-
ity attribute of microser-
vices during the DevOps
phases

2025 SMS • In which industry domains is AI used for microservices?
• What challenges arise in applying AI to microservices design?
• What benefits does AI offer over traditional microservices design?
• What are the emerging AI trends in microservices design?
• What input artifacts are used in AI-driven microservices design?

[14]
AI for improving mi-
croservices design, de-
composition, and valida-
tion

2025 SLR • What AI methods support microservices design in new software systems?
• What challenges arise in applying AI to microservices design?
• What benefits does AI offer over traditional microservices design?
• What are the emerging AI trends in microservices design?
• What input artifacts are used in AI-driven microservices design?

[15]
Microservice:
identification techniques,
tools, factors, issues, and
migration benefits

2024 SMS • How are monolithic systems to microservices migration done?
• Which factors have caused the migration of monolithic systems to microservices?
• What are the issues and benefits of migrating towards microservices?

[9]
Microservice: Evolution 2024 SLR • How has the area of study on microservices identification evolved?

• What is the current state-of-the-art in microservices identification research?
• What are the current and potential challenges associated with microservices identification?

[16]
Microservice: Migration
Techniques, Tools, Fac-
tors, and Benefits

2024 SMS • How are monolithic systems to microservices migration done?
• Which factors have caused the migration of monolithic systems to microservices?
• What are the issues and benefits of migrating towards microservices?

[17]
Migration Approaches,
Challenges, Successful
factors, and Potential for
industrial adoption

2022 SMS • How many articles in this field of research can be found each year?
• What are the primary venues for the production and printing of the research?
• What are the principal publication types in the research area?

[18]
Microservices:
Decomposition

2023 SLR • What are the existing approaches, tools, and methods observed in the decomposition of monolith to microservices?
• What are the metrics, datasets, and benchmarks used for evaluating monolith decomposition to microservices?
• What research gaps can be identified in the current literature?

[19]
Microservices: Quality
Assurance

2021 SLR • What problems and challenges are there for the migration process of monolithic applications to microservices?

[20]
Microservice: Evolution 2021 SMS • What methods and techniques are used in microservice analysis?

• What are the problems or opportunities that are addressed using microservice analysis techniques?
• Does microservice analysis overlap with other areas of software analysis, or are new methods or paradigms needed?
• What potential future research directions are open in the area of microservice analysis?

[21]
Microservice: Migration
Techniques

2019 RR • What are the migration techniques proposed in the literature?
• In what types of systems have the proposed techniques been applied?
• What type of validation do the authors of the techniques use?
• Are there challenges associated with migration from monolith to microservices?

[22]
Microservice:
Refactoring Approaches

2019 SLR • What are existing architectural refactoring approaches in the context of decomposing a monolithic application
architecture into Microservices, and how can they be classified with regard to the techniques and strategies used?

[23]
Microservice: Migration
Strategies

2019 SLR • Which strategies have been reported in the literature to support the migration of legacy software systems to
microservices-based architecture?

• Which lessons learned have been reported in the literature regarding challenges and advantages perceived as a
consequence of the aforementioned migration?

[10]
Microservice: Migration
Intentions, Strategies,
and Challenges

2019 IS • What are the intentions for migrating existing systems to Microservices?
• Which Microservices migration strategies and decomposition approaches do companies apply?
• What are the major technical and organisational challenges during a Microservices migration?

[24]
Microservice: Migration
Artefacts

2023 SMS • During the process of re-architecting a legacy system, are data-driven artifacts like database schema and the state of
data used for identifying potential microservices?

• How are data-driven artifacts, like the database, used in the process of software migration to services/microservices-
based architecture?

[25]
Microservice: Migration
practices

2018 IS • What are the activities carried out by practitioners when migrating towards a microservice-based architecture?
• What are the challenges faced by practitioners when migrating towards a microservice architecture?

[26]
Microservice: Migration
Reasons and Challenges

2018 IS • NP

[27]
Microservice: Migration
Problems and Challenges

2021 SMS • NP

[28]
Microservice: Migration
Quality Attributes

2022 SLR • Which studies implement a quality-driven approach to migrate to microservices?
• Which are the quality attributes analyzed in the migration phases?
• In which migration phase is the quality-driven process implemented?

IS: Industry Survey; SLR: Systematic Literature Review; SMS: Systematic Mapping Study; RR: Rapid Review; NP: Not Provided.

study is structured into five phases: Pre-migration, Identifica-

tion, Packaging, Deployment, and Monitoring. These phases

result from a synthesis and refinement of prior works, tailored

to the scope of ML-supported migration. This structuring

aims to capture the full lifecycle of monolith-to-microservices

transition while highlighting phases where automation through

machine learning could provide concrete benefits.

Abgaz et al. [18] introduced the Monolith to Microser-

vices Decomposition Framework (M2MDF), identifying major

phases and key elements involved in the decomposition pro-

cess. They analyzed existing methods, tools, and metrics used

for decomposition, proposing future directions for refining

techniques. Fritzsch et al. [22] similarly classified refactoring

approaches for decomposition. However, these studies do not

consider the role of machine learning (ML) in supporting or

automating migration tasks. Migration challenges and quality

attributes have also been addressed. Velepucha et al. [19]

identified quality improvement tactics, while Ponce et al.

[21] categorised migration techniques by automation and val-

idation. Razzaq et al. [17] examined organizational factors

4

influencing successful migration. Bushong et al. [20] explored

overlaps between traditional and microservice-specific soft-

ware analysis. While insightful, these works do not explore

ML-driven migration strategies, inputs, or evaluation methods.

Saucedo et al. [16] proposed a structured migration process

based on real-world industrial cases, offering a catalogue of

tools and influencing factors. However, their work does not

examine ML-based automation. Daniel et al. [14] discussed

microservices design inputs and challenges, while Sergio [13]

mapped AI techniques in DevOps but did not focus on

migration-specific ML strategies.

Other studies reviewed migration strategies and lessons

learned. Silva et al. [23] and Capuano et al. [28] highlighted

strategic challenges, whereas Kalske et al. [26] focused on

organizational motivations. Mparmpoutis et al. [24] leveraged

data artifacts for service identification, and Kazanavivcius et

al. [29] examined legacy migration drawbacks. None of these

works, however, evaluated ML-based techniques, their automa-

tion potential, or supporting inputs and metrics. Di Francesco

et al. [25] studied practitioner challenges during migration,

and Fritzsch et al. [10] explored migration intentions and

organizational factors. Yet, these studies do not consider ML

or its evaluation in migration automation.

In summary, existing works provide valuable foundations

for understanding microservice migration challenges, strate-

gies, and decomposition methods. However, to our knowledge,

no prior study has systematically investigated the use of

ML techniques in this context. Our study addresses this gap

by examining the phases of migration automated using ML,

the input types, techniques applied, evaluation practices, and

challenges faced.

III. RESEARCH METHOD

We followed the updated PRISMA guidelines [30], [31] and

Kitchenham et al. [32] guidelines to review and report our

findings. We used three main phases: planning, conducting,

and reporting the review. During the planning phase, we

defined the objective of SLR and reviewed the protocol. The

objective of this SLR is defined in Section I. This section

defines the review protocol for conducting the SLR. It consists

of six steps: ① defining the research questions, ② formulating

the search query, ③ selecting the studies, ④ snowballing,

⑤ assessing the quality of the studies, and ⑥ extracting and

analysing the data. In the following subsections, we explain

each step of our review protocol.

A. Research Questions (RQs)

This study answers the following RQs:

RQ1: Which migration phases are automated by ML?

Rationale: By analysing the phases and the tasks supported

by ML, we want to understand the role and impact of ML in

the migration process. This investigation provides insights into

how ML is integrated into current migration approaches.

RQ2: How are ML migration inputs characterised in terms

of type, granularity, source, and preprocessing?

Rationale: By categorising inputs based on their types,

granularities, sources, and preprocessing methods, we want to

create a structured classification of the inputs and understand

how inputs are gathered, prepared, and utilised in machine

learning models for microservices migration.

RQ3: What ML techniques and learning paradigms are

applied in migration approaches?

Rationale: By investigating the ML approaches in the

migration, we want to (1) identify and classify the ML models

used, (2) examine their learning paradigms, and (3) analyse

the features leveraged to enhance model performance. This

RQ provides a comprehensive understanding of how ML

contributes to different phases of the migration.

RQ4: How are ML-based migration approaches evaluated

with respect to metrics, benchmarks, tools, and success crite-

ria?

Rationale: By investigating how ML-based methods for mi-

croservices migration are evaluated, we want to (1) identify the

evaluation metrics used to assess the quality and performance

of these methods, (2) explore the benchmarks employed for

comparative analyses, (3) understand the success criteria that

define their effectiveness, and (4) analyse the tools available

for implementing and evaluating these approaches.

RQ5: What challenges arise in using ML approaches?

Rationale: By examining the limitations, we aim to iden-

tify and analyse the key challenges associated with applying

machine learning techniques in the migration from monolithic

architectures to microservices.

B. Search Query

We formulated our search query by applying the PICO

(Population, Intervention, Comparison, Outcome) framework

[33]. We followed the following steps:

➊ Obtaining the main terms from our main research ques-

tion, as stated in the introduction.

➋ Identifying the possible synonyms of the main terms.

➌ Applying the Boolean OR to combine possible synonyms

of the main terms.

➍ Applying the Boolean AND to combine expressions in

the previous step.

As a result of PICO framework, we formulated the following

search query:

(Monolith* OR Exist* OR Legac*) AND (Microser-

vice* OR Micro-service* OR MSA) AND (Migrat* OR

Identif* OR Decompos* OR Extract* OR Transform*

OR Refactor* OR Transit* OR Creat* OR Genera*)

AND (Machine learning OR ML OR Neural Network*

OR *coder OR *supervised OR Reinforcement Learn-

ing OR Model*)

To obtain more comprehensive results, we used the asterisk

(*) in search queries as a wildcard to match any sequence of

characters.

C. Studies Selection

We applied the PRISMA steps to select the PSs. The main

steps include database identification, removal of duplicates,

5

screening, eligibility assessment, multiple rounds of both

backwards and forward snowballing, and quality assessment

of each study. Figure 1 summarises those steps.

ACM

(76)

Compendex

(757)

IEEE Xplore

(822)

ScienceDirect

(34)

WoS

(534)
Scopus

(61)

Wiley

(17)

All Studies Identified From Digital Libraries

(n=2301)

Studies After Duplicates Removal

(n=1219)

Duplicates Removal

(n=1082)

Title and Abstract Studies

Excluded (n=1151)
• Apply IC1-IC6 and EC1-EC3

Studies Assessed for

Eligibility (n=68)

Full-text Read Studies

Excluded (n=14)
• Apply IC7-IC10 and EC4-EC6

-1082 Studies

-1151 Studies

Studies Included Before

Snowballing (n=54)

Studies Added After

Snowballing Round-I (n=19),

Round-II (n=11), Round-III

(n=3), and Round -IV (n=2)

-14 Studies

Studies Included After

Snowballing (n=89)

Studies Included in Review

(n=81)

+19 Studies

+11 Studies

+3 Studies

+2 Studies

- 8 Studies

Id
e
n

ti
fi

c
a
ti

o
n

S
c
re

e
n

in
g

E
li
g

ib
il
it

y
S

n
o

w
b

a
ll
in

g
Q

u
a
li
ty

 A
s
s
e
s
s
m

e
n

t
In

c
lu

d
e
d

• WoS: Web of Science

• IC1-IC6: First Six Inclusion Criteria

• IC7-IC10: Last Four Inclusion Criteria

Fig. 1: PRISMA Flow for Primary Studies Selection

1) Databases Identification: We selected seven online digi-

tal libraries: ACM Digital Library, Compendex, IEEE Xplore,

ScienceDirect, SpringerLink, Scopus, Web of Science, and

Wiley. These libraries are widely used for literature reviews

in software engineering, as recommended by Dyba et al. [34].

We applied our search query to each of these digital

libraries. However, some libraries impose restrictions when

performing queries. For instance, ScienceDirect limits queries

to a maximum of eight connectors, while the ACM Digital

Library does not allow wildcards. We adjusted the search

query to meet the specific requirements of each library. Table

II shows the search queries executed in each digital library and

the number of studies retrieved. Our search was confined to

TABLE II: Database Search Results

Database All Search Studies Selected Studies (PSs)

ACM 76 10
Compendex 757 21
IEEE Xplore 822 37
ScienceDirect 34 3
Scopus 61 6
Web of Science 534 1
Wiley 17 3

Total 2301 81

English-language, peer-reviewed scholarly articles published

in journals, conferences, and workshops between 2015 and

2024. This time frame was chosen due to the increase in

microservices-related literature starting in 2015 [35]. We ini-

tially retrieved a total of 2301 studies from seven libraries.

2) Duplicates Removal: Duplicates were identified based

on an exact match of the study’s title, first author, and venue

(conference or journal). This reduced the total from 2301

studies to 1219.

3) Screening: We defined inclusion and exclusion criteria

and applied them to select relevant primary studies while

excluding irrelevant ones.

Inclusion Criteria: We considered the following inclusion

criteria for PSs selection:

• IC1: The study is written in English.

• IC2: The study is published between 2015 and 2024.

• IC3: The study is published in journals, conferences, or

workshops.

• IC4: The study has at least 4 pages.

• IC5: The study focuses on the migration of monolith

applications into microservices.

• IC6: The study uses a machine/deep learning algorithm.

• IC7: The study provides enough information to answer

at least three research questions (RQs).

• IC8: The study has its full text available online.

• IC9: The study provides sufficient migration details.

• IC10: The study uses an automated or semi-automated

migration approach.

Exclusion Criteria: We considered the following exclusion

criteria:

• EC1: The study is a secondary source (e.g., literature

review, survey, opinion piece, or discussion).

• EC2: The study has not been peer-reviewed.

• EC3: The study is a graduate thesis or project report.

• EC4: The study’s full text is not available online.

• EC5: The study does not provide enough details.

• EC6: The study does not provide an automated or semi-

automated migration approach.

We applied our inclusion and exclusion criteria in two

steps: first, using the titles and abstracts, then the full texts.

Criteria IC1-IC6 and EC1-EC3 were applied to the titles and

abstracts, while IC7-IC10 and EC4-EC6 were applied to the

full texts. We considered that a study provided ’sufficient

migration details’ (IC9) if it described at least the system ana-

lyzed, the ML technique applied, and the evaluation procedure

used. Conversely, studies lacking two of these three aspects

were excluded under EC5. Additionally, EC5 encompassed

studies that solely described theoretical approaches without

providing experimental validation or application to real sys-

tems or datasets, in order to ensure the practical relevance

of the selected primary studies. We acknowledge that some

inclusion and exclusion criteria are logically complementary

(e.g., IC8/EC4, IC9/EC5 and IC10/EC6) describe opposing

conditions. Additionally, IC7 partially overlaps with EC5. We

explicitly state both inclusion and exclusion criteria sepa-

rately to comply with the PRISMA [12] guidelines, which

recommend clearly articulating both positive and negative

selection criteria to enhance transparency and reproducibility.

To clarify the practical application of the criteria, we present

in Table VII (in Appendix) examples of excluded studies for

6

IC7–IC10, EC5, and EC6, along with brief justifications for

their exclusion. During the initial screening, we assessed the

titles, abstracts, and page counts, and determined if the studies

qualified as primary. Two authors independently conducted the

screening using predefined inclusion and exclusion criteria. To

ensure consistency, we compared the screening results for 50

randomly selected studies using Cohen’s Kappa [36]

We calculated Cohen’s Kappa, achieving near-perfect agree-

ment (k=0.85), highlighting the consistency of our screening.

For the remainder of the process, authors met regularly to

review results and resolved disagreements through discussion

and consensus. After completing the initial screening, we

selected 68 studies for full-text review as potential PSs.

4) Eligibility Assessment: In the second round of screening,

two authors independently applied IC7-IC10 to 68 studies by

thoroughly reviewing them. To ensure a shared understanding

of the inclusion and exclusion criteria, we compared the results

of 15 randomly selected studies using Cohen’s Kappa. We

calculated a near-perfect agreement (k=0.93), demonstrating

strong consistency between the two authors. This allowed us

to confidently proceed with the eligibility assessment for the

remaining studies. Ultimately, we identified 54 PSs that met

the eligibility criteria.

D. Snowballing

We conducted four rounds of both forward and backwards

snowballing to identify additional primary studies (PSs). In

Round 1, we reviewed the references and citations of 54 initial

PSs and identified 1,347 potential studies. After removing

duplicates, we retained 1,172 studies and applied our inclusion

and exclusion criteria, which resulted in 19 new PSs, bringing

the total to 73. In Round 2, we used the 19 newly added

PSs to identify 602 potential studies and selected 11 new PSs

using the same criteria, raising the total to 84. In Round 3, we

reviewed the references and citations of the 11 new PSs, found

190 potential studies, and selected 3 additional PSs, bringing

the total to 87. In Round 4, we examined the references and

citations of the 3 PSs from the previous round, identified 43

potential studies, and selected 2 more PSs. This brought the

final total to 89 PSs. Table III presents the details from each

round.

TABLE III: Snowballing Results

Snowballing Round Retrieved No duplicates Included

Backward & Forward 1 1346 1172 19
Backward & Forward 2 602 375 11
Backward & Forward 3 190 135 3
Backward & Forward 4 43 43 2

Total 1725 35

E. Quality Assessment

Following the guidelines proposed by Li et al. [37] and

Dyba et al. [38], we developed a quality assessment checklist

comprising eight questions (or quality criteria) to evaluate

the quality of our primary studies (PSs). Table IV shows the

quality criterias we used in this study based on Li et al.’s

work [37]. Responses to each question were: ”Yes” (1 point),

”Partially” (0.5 points), or ”No” (0 points). Three authors

independently applied this checklist to each study, discussed

any discrepancies, and achieved consensus on the scores. We

calculated the quality score for each study by summing the

individual scores and converting this total into a percentage.

Studies achieving an 80% score or higher were retained. Using

this criterion, we excluded eight studies falling below the

threshold and included 81 PSs in our review.

F. Data Extraction and Analysis

We analyzed and extracted the necessary data from each pri-

mary study (PS) to address our research questions (RQ1-RQ5).

Table V presents the key data items extracted, including the

item name, a brief description, and the corresponding research

question it addresses. The full details of the extracted data are

available in our publicly accessible replication package.

To ensure accuracy and consistency, two researchers in-

dependently extracted data using a shared Excel template

with dedicated columns for each data field. Initially, each

researcher processed 50% of the PSs. This was followed by a

full cross-validation phase, during which each extraction was

reviewed by the other researcher. We achieved strong inter-

rater reliability, with only 8% of the data points requiring

arbitration. In those cases, a senior third researcher resolved

discrepancies by re-examining the original source papers and

documenting the final decision.

IV. OVERVIEW OF THE SELECTED LITERATURE

We analysed the primary studies (PSs) (presented in Table

VIII in appendix A) to gain deeper insights into the selected

set. In this section, we present our findings on publication

trends, distribution of PSs by study type, databases used, and

the publication venues associated with these PSs.

A. Publication Trends

We analysed the publication trends of the selected primary

studies (PSs). Notably, 17.2% of the PSs were published in

2022, marking the year with the highest publication volume.

An increasing trend in conference publications is observed

from 2016 to 2022. In contrast, journal publications show a

rise starting in 2021, with no journal publications recorded

before this period except for two PSs in 2019. Only a few

PSs were published in workshop proceedings, specifically in

2022 (1 PS), 2023 (2 PSs), and 2024 (1 PS). Figure 2 shows

the publication trends over the years for the PSs.

B. Distribution of PSs by Type

We analysed the types of the selected primary studies (PSs).

As shown in Figure 2 most of the PSs are from conferences,

comprising 65% (53 PSs), followed by journals with 30%

(24 PSs). The smallest group is from workshops, accounting

for only 5% (4 PSs). The high conference publication rate

may indicate rapid field growth, while journal articles add

rigour. Limited workshop presence may reflect field maturity

or reduced exploratory discussions.

7

TABLE IV: Quality Criteria extracted from [37]

No Quality Criteria

Q1 Is there a clear statement of the aims of the research? Consider: Is there a rationale for why the study was undertaken?
Q2 Was the research design appropriate to address the aims of the research? Consider: Did the researcher justify the design of the research?
Q3 Was the research method implemented in a way that addressed the research issue? Consider: Has the researcher discussed the process or the details

of the methods that were chosen/proposed?
Q4 Is there a clear statement of findings? Consider: Has an adequate discussion/evaluation of the evidence identified or method proposed, both for and

against the researchers’ arguments, been demonstrated?
Q5 Has the limitation or future work been considered adequately? Consider: Did the researcher examine the limitations and future work?
Q6 Is there an adequate description of the context in which the research was carried out? Consider: Did the researcher explain how the context

influenced the study, and was this context relevant to the aim of the research?
Q7 Was the data collected in a way that addressed the research issue? Consider: Did the researcher collect data from relevant sources, and was the

data collection process clearly described and ethically sound?
Q8 Was the data analysis sufficiently rigorous? Consider: Did the researcher provide a thorough and unbiased examination of the data, and were the

limitations of the analysis acknowledged?

TABLE V: Data Extraction Template

Data Item Short Description Example Value RQs

Code A unique identifier assigned to the paper trabelsi2024 magnet Varied
Title The title of the research paper Magnet: Method-Based Ap-

proach Using Graph Neural
Network for Microservices
Identification

Varied

Year The year in which the paper was published 2024 Fixed
Venue The conference, journal, or workshop where the study was published International Conference on

Software Architecture
Varied

Authors The individuals who contributed to conducting the study Trabelsi, I and Moha, N and
Guéhéneuc, YG and ...

Varied

Migration Phase The specific phase of system migration from monolith to microservices Identification Fixed RQ1
Automated Task Exact task automated during the migration phase Identification Varied RQ1
ML Integration Specifies where machine learning (ML) is integrated Clustering and semantic

analysis
Varied RQ1

Input type Defines the types of input used, such as source code, logs, UML diagrams,
etc.

Source code Varied RQ2

Granularity of Data The level of detail or precision in the data, such as files, classes, lines of code,
or logs

Methods Fixed RQ2

Source of Data Indicates the data source: open source, industrial projects, user-generated, or
collected

Open Source Fixed RQ2

Data preprocessing Steps to prepare data, including collection, cleaning, normalization, and trans-
formation

Static analysis with KDM
and semantic analysis using
word2vec

Varied RQ2

ML Technique Indicates the machine learning techniques used Deep Modularity Networks
(DMoN)

Varied RQ3

Learning Approach Indicates the learning approach: supervised, semi-supervised, unsupervised, etc. Unsupervised Fixed RQ3
Feature Selection Specifies the features used for model training method calls, method bod-

ies, and class structures
Varied RQ3

Evaluation Metrics Specifies the metrics used to evaluate the output Precision, recall, f-measure,
SMQ (Structural Modular-
ity Quality), CMQ (Concep-
tual Modularity Quality),
CHM (Cohesion at Message
level), and CHD (Cohesion
at Domain level).

Varied RQ4

Benchmark Indicates performance benchmarks or comparisons with other systems Compared against Service-
Cutter and MicroMiner

Varied RQ4

Success Criteria Specifies success criteria, such as improved recall, quality, or performance Improved modularity, func-
tional independence, and re-
duced coupling.

Varied RQ4

Tool Availability Indicates tool availability: open-source, commercially available, or a proof of
concept (PoC)

Available, Open Source Fixed RQ4

Challenges Identifies the challenges discussed in the paper Generalizability across dif-
ferent types of monoliths
and data availability

Varied RQ5

C. Publication Venue

We identified 72 distinct venues for the PSs. Most venues

have a single PS, except for ASPLOS (2 PSs), ICWS (2 PSs),

ISSRE (2 PSs), ASE (3 PSs), ICSA (3 PSs), and ICSOC (3

PSs). The broad distribution of PSs across different publication

venues suggests that the research topic attracts interest from

various subfields within software engineering and related ar-

eas. However, most studies remain monodisciplinary in nature,

focusing predominantly on aspects of software architecture,

migration engineering, and software modernisation.

D. Databases for Selected PSs

We observe that the majority of PSs were sourced from

IEEE Xplore (37 PSs or 45.6%), followed by Compendex (21

PSs or 25.9%) and ACM Digital Library (10 PSs or 12.3%).

We observed the presence of PSs in other databases, such

as Scopus (6 PSs or 7.4%), ScienceDirect (3 PSs or 3.7%),

and Wiley (3 PSs or 3.7%). The Web of Science database

provided the least contribution with 1 PS (1.2%). This diversity

in sources enhances the robustness of the literature review by

ensuring a comprehensive collection of relevant studies.

For more visuals and tables, see Appendix A.

8

Fig. 2: Distribution of PSs

V. MIGRATION PHASES AUTOMATED BY ML (RQ1)

The migration of legacy systems to microservices involves

a sequence of complex phases, many of which are now

supported or automated by machine learning. In this section,

we analyse the phases of the migration process and iden-

tify the specific tasks that ML automates in this process.

Following prior works on microservices migration: Abgaz et

al. [5], Fritzsch et al. [22], and Saucedo et al. [16], we struc-

tured the migration process into five phases: Pre-migration,

Identification, Packaging, Deployment, and Monitoring. The

identification phase is the most frequently covered in our

primary studies (PSs), with 48% (n=39), followed by the

monitoring phase at 35% (n=28). The deployment phase is

also notable, covered by 15% of PSs (n=12), while the pre-

migration phase is the least discussed, with only 2.24% (n=2).

Figure 2 shows the number of PSs that target each phase.

We provide the definitions for all key terms related to RQ1,

including migration phases and associated automated tasks, in

Appendix A for clarity and consistency.

A. Pre-migration

The pre-migration phase focuses on evaluating the current

approaches, methods, and tools used in the legacy system.

This phase also involves planning the migration by identify-

ing suitable strategies, defining objectives, and outlining the

steps needed to ensure a smooth transition. Researchers have

leveraged ML to automate tasks such as designing microser-

vices, which assists in planning microservice architecture by

analyzing legacy systems [P1], and predicting success rates of

migration, which uses predictive models to evaluate potential

migration outcomes [P2].

B. Identification

The identification phase defines the boundaries of prospec-

tive microservices. This involves detecting functional mod-

ules, mapping dependencies, and clustering components with

business requirements. ML techniques have been applied to

automate tasks such as boundary identification, which detects

functional boundaries within monolithic systems [P3]; cluster-

ing, which groups related components or services using ML-

based clustering algorithms [P4]; and microservices identifi-

cation, which automates the process of determining candidate

microservices [P5]–[P13].

C. Packaging

The packaging phase encapsulates the identified compo-

nents into functional microservices. This phase includes defin-

ing service interfaces, managing dependencies, and generating

missing components. However, no studies in our review pro-

posed the use of ML for this phase, highlighting a significant

gap in the research landscape.

D. Deployment

The deployment phase focuses on deploying the created

microservices into a target environment. This involves setting

up orchestration tools, configuring infrastructure, and integrat-

ing with existing systems. ML techniques are increasingly

used to automate tasks such as automated deployment, which

automates the deployment of microservices into production en-

vironments [P13], [P14]; resource management, which ensures

efficient use of infrastructure resources during deployment

[P15]–[P18]; resource allocation, which dynamically allo-

cates resources to microservices based on workload demands

[P15], [P17], [P19]–[P23]; microservice autoscaling, which

adjusts the scale of microservices to match performance re-

quirements [P24]; microservice orchestration, which manages

dependencies and interactions between microservices [P25];

microservice placement, which decides optimal placements

for microservices within the infrastructure [P16], [P26]; and

resource estimation, which estimates the resource needs of

microservices to optimize deployment strategies [P27].

E. Monitoring

The monitoring phase ensures the reliability and efficiency

of the microservices-based system post-migration. This phase

involves continuous performance tracking, anomaly detection,

and dynamic resource management to meet changing workload

demands. ML models enhance the monitoring process by

enabling proactive detection of issues and optimising resource

usage. Tasks automated in this phase include anomaly de-

tection, which identifies abnormal behaviors or performance

issues in microservices [P28]–[P30]; performance analysis,

9

which evaluates the performance metrics of deployed mi-

croservices [P31]; detection of failure types, which classifies

failure types to facilitate troubleshooting [P32], [P33]; fault

diagnosis, which diagnoses root causes of failures to enable

faster resolution [P31]; root cause analysis, which pinpoints

the underlying issues causing anomalies or failures [P21],

[P34]; privacy risks detection, which identifies potential pri-

vacy concerns in microservice interactions [P35]; and sanity

checks, which verifies the correctness of system states and

responses [P27].

VI. INPUTS USED BY ML MIGRATION APPROACHES(RQ2)

It is essential to understand the types of inputs collected and

processed in the migration process to identify how machine

learning techniques are applied. To this end, we categorized

inputs along four dimensions: type, granularity, source, and

preprocessing method. These categories were not predefined,

but emerged inductively from our analysis of the primary

studies. Figure 3 summarizes data we extracted in our PSs.

Fig. 3: Inputs and Preprocessing Tasks in PSs

The resulting taxonomy allowed us to systematically exam-

ine the role and characteristics of inputs used in ML-based

migration approaches. We provide the definitions for all key

terms, including input types, granularity levels, data sources,

and preprocessing categories, in Appendix A for clarity and

consistency.

A. Input Types and Their Role in Migration

In this section, we classify the input types identified in the

primary studies (PSs) into five distinct groups which illustrates

their use in the migration phases. Our analysis reveals that

runtime artifacts are the most commonly used inputs, appear-

ing in 55% of the PSs (n = 45), emphasizing their critical

role in understanding system performance during migration.

Source Artifacts, such as source code and configuration files,

are the second most frequently used, accounting for 35% of

PSs (n = 29). In contrast, domain artifacts (n = 7) and

model artifacts (n = 11), provide valuable high-level system

descriptions, while technical artifacts are the least common,

found in only 2% of PSs (n = 2).

1) Domain Artifacts: Domain artifacts capture high-level

information about the system’s business and functional re-

quirements, aiding in the understanding and identification

of microservices. These include API documentation, which

represents details about the available APIs and their interac-

tions. For example, [P10] highlighted the use of the OpenAPI

specification of the legacy system’s RESTful APIs to identify

microservices. Quality of Service (QoS) constraints represent

parameters that must be maintained during migration. The

authors of [P35] used service communication traces to meet

predefined QoS requirements, such as availability and reliabil-

ity. Architecture recommendations, as provided by [P36], offer

expert suggestions for migration strategies and component

separation. Functional descriptions, such as those provided

by [P37], represent high-level descriptions of system func-

tionalities, capturing technological attributes and relationships

between services.

2) Runtime Artifacts: Runtime artifacts are derived from

the system’s runtime behavior and are crucial for understand-

ing performance and operational characteristics. These include

resource metrics, which focus on information about resource

consumption, such as memory and CPU usage. The study by

[P27] explored the use of API traffic logs to analyze the run-

time behavior of systems. Similarly, [P32] leveraged system

metric data, such as CPU, memory, and disk usage, along

with failure propagation information, to identify resource bot-

tlenecks. [P38] used memory utilisation, network latency, and

packet loss to detect anomalies in containerised microservices,

while [P19] used CPU usage metrics to analyse performance

across different stages of system operation. Monitoring metrics

are another key runtime artifact. [P39] introduced SpanGraph,

a tool that leverages monitoring metrics, trace logs, and config-

uration files to construct directed graphs representing microser-

vice interactions. Performance metrics, such as response time,

throughput, and latency, are also critical. [P40] used time series

data of performance metrics to predict system performance.

Trace logs provide detailed insights into the execution flow

of the system, as demonstrated by [P41], who used trace logs

and performance metrics for anomaly detection. Workloads,

which describe system usage scenarios and patterns, are used

by [P42] to predict response time of microservices.

3) Model Artifacts: Model artifacts describe the system

from an architectural or design perspective, often providing

an abstract representation. Business process models (BPMN)

are used to capture the workflows supported by the system

and align microservices with organisational functions. Several

studies (e.g., [P6]–[P8], [P43]) leverage BPMN to support mi-

croservice identification, demonstrating that business process

understanding can guide the decomposition of monolithic sys-

tems into well-bounded services. UML diagrams, which rep-

resent details of the system design, are also commonly used.

For instance, [P29] combined code, logs, and UML diagrams

to provide unique insights for anomaly analysis, leveraging the

visual representation of system design to identify issues. User

stories are another key model artifacts, used by [P44] to guide

the organisation of microservice development tasks.

4) Source Artifacts: Source artifacts pertain to the actual

software and its configuration, offering insights into the sys-

10

tem’s implementation. For example, [P13] used source code to

identify microservices, while [P1] analyzed source code files

from a monolithic application to generate a calling-context tree

for better system understanding and transformation. Configura-

tion files are used by [P39] alongside trace logs and monitoring

metrics to construct SpanGraph, a directed graph representing

microservice interactions for fault localization. Data files are

used by [P20] to support latency-aware provisioning.

5) Technical Artifacts: They provide the supporting infor-

mation necessary for system operation. These include server

information, which details the infrastructure supporting the

system. For example, [P26] used service radius and capacity,

as well as runtime traces to predict microservice placement.

B. Input Granularity

The granularity of input data, ranging from high-level

abstractions like system architecture diagrams to fine-grained

elements such as lines of code or individual function calls,

plays a critical role in determining the precision and scope

of machine learning tasks. We organize the granularity levels

in descending order of abstraction: application-level, system-

level, process-level, code-level, and data-level. Application-

level granularity (7%, n=6) examines higher-level abstractions,

with [P45] using use case-level data for workflow modeling

and [P29] analyzing application files for anomaly detection.

URI and API-level granularity, as in [P46] and [P47], sup-

port system decomposition and service identification. System-

level granularity is the most frequently used (51%, n=41), as

seen in [P14] and [P48], which monitor and analyze system

components and interactions. Process-level granularity (9%,

n=7) examines workflows, with [P47] using API operation-

level data for decomposition and [P8] using activity-level

granularity for workflow modeling. Code-level granularity

(32%, n = 26) targets classes and methods for tasks like

refactoring and microservice identification, as seen in [P49]

and [P12]. Finally, data-level granularity (2%, n = 2) is the

least explored and focuses on stored information, such as table-

level data in [P50] and entity-level representations in [P3].

C. Data Sources

Our analysis shows that open-source datasets are the most

widely used, representing 62% of PSs (n=50), showcasing the

reliance on publicly available repositories for experimentation

and validation. For example, [P51] validated their approach

on on open-source applications like JPetStore. Real-world

data, which provides insights from operational systems, is

used in 35% of PSs (n=28). For instance, [P52] used the

AIOps Challenge dataset to detect anomalies and faults in

microservice systems. Meanwhile, synthetic data, generated

to simulate real-world conditions, is utilized in 14% of PSs

(n=11). For example, [P34] combined synthetic data from

Apache Thrift with open-source datasets like DeathStarBench

to debug performance in microservice environments, while

[P2] collected data using a survey and expert interviews to

optimize migration strategies.

D. Preprocessing Tasks

Preprocessing ensures the quality and usability of input

data for machine learning models. Code analysis is the most

frequently employed technique (58%, n = 47), underscoring

the importance of understanding system structure and seman-

tics. Typical approaches rely on static analysis tools such

as JavaParser, which parses source code to extract classes,

methods, and dependencies, providing structured inputs for

machine learning models. Data extraction, used in 48% of

PSs (n = 39), captures essential operational and dependency

information, such as parsing execution traces to build graph

representations, as in [P53]. Data cleaning, employed in 30%

of PSs (n = 24), improves data quality through noise reduction

and normalization. For example, [P41] applied density-based

clustering to filter noisy data points, while [P27] normalised

trace data for compatibility with further analysis. Dependency

modeling, found in 26% of PSs (n = 21), structures relation-

ships for better analysis. For instance, [P54] used vectorisation

and embedding for clustering, and [P55] built dependency

graphs using normalised matrices for analysis with Variational

Autoencoders (VAE). Modeling and task structuring, as in

[P48], represented microservice dependencies using adjacency

matrices, while [P17] captured features like CPU usage and

request counts for workload analysis.

VII. ML APPROACHES APPLIED BY RESEARCHERS (RQ3)

In this section, we discuss the key ML models used in

microservices migration, their learning paradigms, and the

features that enhance model performance. Figure 4 summarises

the data we extracted from our PSs.

Fig. 4: ML Models, Learning Paradigms, and Features in PSs

We provide the definitions for all key terms related to RQ3

in Appendix A for clarity and consistency.

A. Models

Different machine learning models have been applied to

address various phases of the microservices migration process.

Based on our systematic analysis of the literature and aligned

11

with established machine learning taxonomies [39], [40], we

categorise these models into four distinct classes: Classical

machine learning, Deep learning, Graph-based models and

Reinforcement learning. Classical ML models were the most

frequently used (44.40%, n = 36), followed by graph-based

models (28.40%, n = 23), deep learning (18.50%, n = 15),

and reinforcement learning (8.6%, n = 7).

1) Classical Machine Learning: Classical machine learning

techniques are predominantly applied to structured datasets.

Nevertheless, several models, such as Naive Bayes or Support

Vector Machines, also perform well on unstructured data (e.g.,

text) once transformed into feature vectors through methods

like TF-IDF or word embeddings. These techniques are widely

applied to automate tasks such as service identification, de-

pendency analysis, and performance prediction. Classification

techniques, such as Support Vector Machines [P11], Random

Forest [P6], and Naive Bayes [P56], are used to categorise

components and analyse dependencies. Regression techniques,

including Linear Regression [P56] and Support Vector Regres-

sion [P5], predict performance metrics and resource usage.

Clustering methods, such as K-means [P56] and Density-

Based Spatial Clustering of Applications with Noise [P57],

group components for service decomposition. Search-based

techniques, like Genetic Algorithms [P2], optimise migration

strategies.

2) Graph-Based Models: Graph-based methods model

component relationships as graphs, enabling service interac-

tion and dependency analysis. Graph Convolutional Networks

[P58] and Graph Attention Networks [P12] aggregate features

from neighbouring nodes to improve graph representations.

Variational Graph Autoencoders [P55] combine graph convo-

lutional networks with variational inference for tasks like link

prediction.

3) Deep Learning: Deep learning techniques leverage neu-

ral networks to analyse complex data structures. Autoencoders

and Variational Autoencoders [P55] are used for dimensional-

ity reduction and feature learning. Recurrent networks, such as

Long Short-Term Memory [P52] and Gated Recurrent Units

[P29], process sequential data for anomaly detection. Trans-

formers, including Bidirectional Encoder Representations from

Transformers [P30] and CodeBERT [P9], excel in natural

language and code analysis tasks.

4) Reinforcement Learning: Reinforcement learning learns

optimal strategies through interactions with the environment.

Fuzzy Q-Learning [P16] used to handles uncertainty in re-

source allocation, while Deep Q-Learning [P42] and Deep De-

terministic Policy Gradient [P48] used to optimise autoscaling

and resource usage. Multi-Agent Deep Deterministic Policy

Gradient [P26] improves service placement in edge computing

environments.

B. Learning paradigm

The learning paradigms applied in the studies include un-

supervised learning, which is the most popular (67.9%, n =

55), used for tasks like microservice extraction, clustering,

and anomaly detection [P11], [P59]; reinforcement learning

(23.46%, n = 19), primarily for resource provisioning and

deployment optimisation [P20], [P48]; supervised learning

(20.99%, n = 17), applied in anomaly detection and resource

optimisation [P42], [P60]; semi-supervised learning (4.94%,

n = 4), which combines labelled and unlabeled data to refine

service boundaries [P56]; and self-supervised learning (2.47%,

n = 2), which generates pseudo-labels for tasks like failure

localisation and resource provisioning [P23], [P33].

C. Selected Features

Machine learning models in these PSs rely on diverse

feature types to analyze, predict, and optimize different aspects

of the migration process. Structural features are the most

popular (62.96%, n = 51), including class dependencies [P61],

method calls [P4], data dependencies [P50], transactional

dependencies [P6], and call graph dependencies [P62]. Behav-

ioral features (43.21%, n = 35) capture runtime interactions,

such as invocation paths [P4], log events [P59], contextual

log entries [P59], and temporal patterns [P59]. Semantic

features (37.04%, n = 30) focus on the meaning of system

components, leveraging semantic embeddings [P11], function

names [P63], and API descriptions [P4]. Performance features

(29.63%, n = 24) measure system efficiency, including CPU

usage [P45], memory usage [P55], network traffic [P64],

response times [P45], and availability [P65]. These features

collectively enable tasks such as microservice identification,

dependency analysis, anomaly detection, and performance

optimisation.

VIII. EVALUATION OF ML APPROACHES (RQ4)

In this section, we begin by discussing the various evalu-

ation metrics commonly employed to assess the performance

of machine learning models in migration scenarios. Next, we

explore the conducted comparative analyses. Following this,

we outline the success criteria adopted in the literature. Finally,

we will discuss the tools availability of those works. Although

the Data Sources category is discussed in Section VI as part of

input characterization, it also plays an important role in RQ4.

The same data are frequently used not only as inputs to the

ML-based migration techniques but also as a foundation for

their evaluation and validation. Figure 5 summarizes data we

extracted in our PSs.

We provide the definitions for all key terms related to RQ4

in Appendix 8.

A. Evaluation Metrics

Evaluation metrics are categorized into five key areas:

classification and prediction metrics (46%, n=38), software

design metrics (19%, n=16), system behavior metrics (27%,

n=22), clustering metrics (17%, n=14), and developer-centric

metrics (5%, n=4). Each category addresses specific aspects

of microservices migration.

1) Classification and Prediction Metrics: These metrics

assess model performance in labeling and prediction tasks,

primarily during the identification phase. Precision measures

the accuracy of positive predictions, with variations like Pre-

cision@K (PR@K) and Mean Average Precision (MAP) used

12

Fig. 5: Evaluation of ML Approaches in PSs

for ranked predictions or multiple queries. It is commonly

applied in monitoring for anomaly detection, as seen in [P28],

[P30], [P38], [P59]. Recall evaluates the model’s ability to

identify all relevant instances, particularly in anomaly detec-

tion and fault identification tasks, as demonstrated in [P38],

[P56]. The F1-Score balances precision and recall, making

it critical for monitoring and service identification tasks, as

shown in [P6], [P38], [P53], [P59], [P66]. Accuracy represents

the overall correctness of predictions, with variations like Top-

K Accuracy used in multi-class classification tasks, as seen

in [P1], [P5], [P24], [P60]. The Area Under the ROC Curve

(AUC) evaluates binary classification models, particularly in

anomaly detection, as highlighted in [P43], [P67]. Finally, the

Matthews Correlation Coefficient (MCC) provides a balanced

measure of classification quality, especially in imbalanced

datasets, as used in [P59].

2) Clustering Metrics: These metrics evaluate the quality

of service clustering during the identification phase. The Dunn

Index measures the separation between clusters, as demon-

strated in [P5], [P53], [P57], [P66]. The Silhouette Score

assesses the similarity of objects within their cluster compared

to others, as seen in [P24], [P35], [P43], [P57]. Newman-

Girvan Modularity evaluates the strength of network division

into clusters, as highlighted in [P5], [P53], [P60], [P63]. Non-

Extreme Distribution ensures balanced cluster sizes [P49],

[P55], [P58], [P62]. Maximum Cluster Size limits the largest

cluster size to avoid granularity issues [P65]. The Number of

Singleton Clusters counts clusters with a single element to

prevent excessive fragmentation [P65].

3) System Behavior Metrics: These metrics assess opera-

tional performance, resource utilization, and scalability during

and after migration. Response Time measures the time taken

for the system to respond to a request, as highlighted in

[P38], [P56], [P60], [P66]. Resource Utilization evaluates the

effectiveness of resource use, as seen in [P24], [P35], [P57],

[P63]. Energy Consumption assesses the total energy required

for operations, as demonstrated in [P1], [P6], [P60], [P66].

The SLA Violation Rate measures the percentage of time a

system fails to meet its Service Level Agreement obligations,

as shown in [P24], [P43], [P57], [P63]. Scalability evaluates

the system’s capacity to maintain or improve performance

under increased workload, as in [P5], [P6], [P35], [P53].

4) Software Design Metrics: These metrics evaluate soft-

ware quality during the evaluation phase, focusing on main-

tainability and modularity. Cohesion measures the relatedness

of functionalities within a service, as demonstrated in [P6],

[P35], [P57], [P66]. Coupling assesses dependencies between

services, as seen in [P5], [P56], [P60], [P63]. The Granularity

Metric evaluates service size and scope, as highlighted in [P1],

[P24], [P53], [P57]. Structural Modularity measures the degree

of system decomposition into independent components, as

shown in [P5], [P38], [P43], [P66]. Cognitive Complexity as-

sesses code understandability for developers, as demonstrated

in [P1], [P57], [P60], [P63].

5) Developer-Centric Metrics: These metrics evaluate

alignment with business requirements and developer feedback

during the validation phase. Developer Validation assesses

qualitative insights from developers, as seen in [P1], [P6],

[P57], [P66]. Closeness to Manual Expert Analysis compares

automated classifications to expert evaluations, as highlighted

in [P24], [P43], [P53], [P57].

B. Benchmarking

The reviewed PSs demonstrate a strong emphasis on bench-

marking to evaluate and compare the effectiveness of their ap-

proaches. Direct method comparisons are the most commonly

conducted, appearing in 51.85% of the PSs (n=42), while

evolutionary method comparisons are less frequent, accounting

for only 7.41% of the PSs (n=6).

1) Direct Method Comparisons: This category includes

methodologies that assess the performance of ML models

against existing approaches and techniques. Most PSs utilized

comparisons with the State of the Art to benchmark current

techniques against the latest advancements in the field, as

well as against traditional rule-based and heuristic methods.

For example, [P11], [P12], [P42], [P45], [P53], [P56], [P64]

highlight comparisons across ML-based approaches and tra-

ditional techniques. Additionally, some PSs focused on the

effectiveness of widely used algorithms and techniques, such

as clustering algorithms like K-Means, DBSCAN, and their

variations. These were explored in studies like [P68]–[P70].

2) Evolutionary Method Comparisons: This category em-

phasizes the development of new methodologies built upon

previous research. A few PSs aimed at enhancing existing

Research by improving established techniques through the in-

tegration of novel features or adaptations for specific microser-

vices migration scenarios. For instance, [P8], [P58] demon-

strated enhancements to clustering and service identification

methodologies. Other PSs explored combinatory approaches,

combining different methodologies to leverage their strengths

and improve migration outcomes. Examples include hybrid

methods that integrate clustering with deep learning models

for better service decomposition, as seen in [P27], [P53].

C. Success Criteria

The success of ML-based migration approaches is deter-

mined by various criteria. Technical performance is the most

emphasized, appearing in 55.56% of the PSs (n=45), with

13

key indicators including improvements in precision, recall,

and resource optimization. Structural quality is considered

in 35.80% of the PSs (n=29), focusing on modularity and

cohesion. Outcome alignment with standards and baselines is

assessed in 29.63% of the PSs (n=24). Functional and domain-

specific success is addressed in 25.93% of the PSs (n=21),

while system effectiveness and adaptability are evaluated in

only 17.28% of the PSs (n=14).

1) Technical Performance Metrics: These metrics focus on

the operational effectiveness of the ML models and their im-

pact on system performance. Key indicators include increased

precision, recall, and F1-Score, which demonstrate the effec-

tiveness of the proposed ML-based approach in performing

specific tasks, as shown in [P28], [P31], [P45], [P47]. Reduced

response times and latency indicate improved system perfor-

mance, leading to better user experiences and satisfaction,

as highlighted in [P14], [P25], [P61]. Enhanced efficiency,

reflecting the ability of the migration process to operate with

limited resources while achieving desired outcomes, is another

critical indicator, as seen in [P16], [P51]. Increased throughput,

which measures the system’s capacity to handle requests,

reflects the effectiveness of the ML approach in optimizing

service delivery, as demonstrated in [P5], [P52].

2) Outcome Alignment with Standards and Baselines: This

criterion evaluates how well the outcomes of the ML-driven

migration align with established standards and benchmarks.

Achieving a defined baseline of performance metrics is crucial

for evaluating the success of the migration, as improvements

over this baseline indicate the effective use of ML methodolo-

gies. For example, [P3], [P4], [P10] demonstrated surpassing

baseline metrics as a success criterion. Additionally, developer

architectural alignment ensures that the architecture of the

migrated services aligns with developer expectations, with

positive feedback from developers serving as a key indicator

of success, as seen in [P37], [P65].

3) Structural Quality: This category focuses on the in-

tegrity and quality of the microservices architecture. Increased

modularity ensures that microservices are independently de-

ployable and maintainable, allowing for easier updates and

scaling, as noted by [P6], [P71]. Increased cohesion assesses

the relatedness of functionalities within a service, as high-

lighted in [P44], [P58]. Decreased coupling measures the

reduction in dependencies between services [P12], [P51].

4) System Effectiveness and Adaptability: This criterion

evaluates how well the system performs and its ability to

adapt to changing requirements. Increased scalability measures

the system’s ability to scale resources up or down as needed

to accommodate varying workloads, as emphasized in [P40],

[P48]. Increased resource utilization aims to maximize the

effectiveness of resource use during migration, as shown in

[P29], [P60]. Increased automation evaluates the extent to

which processes are automated, reducing manual intervention

and enhancing efficiency, as highlighted in [P13].

5) Functional and Domain-Specific Success: This criterion

evaluates how well ML models meet domain-specific require-

ments and objectives. Increased anomaly detection quality en-

hances the reliability of the migration process and operational

stability, as demonstrated in [P30], [P59]. Reduced QoS viola-

tions indicate that the migrated services are performing within

acceptable parameters, as seen in [P21], [P42]. Increased cost

efficiency reflects the ability to achieve desired outcomes with

minimal financial expenditure, as highlighted in [P19], [P46].

D. Tool Types and Availability

Research prototypes are the most commonly reported tool

type, appearing in 27.18% of the PSs (n=22), while only

2.47% (n=2) describe production-grade applications. Regard-

ing availability, 69.14% of the PSs (n=56) did not provide

information on tool availability, whereas 30% (n=24) described

open-source tools. Proprietary tools are mentioned in one PS.

1) Tool Types: Research prototypes, developed within re-

search projects for validation purposes, are often partial im-

plementations (20 PSs). Examples include tools proposed in

[P18], [P61], [P66], [P71], [P72]. In contrast, production-grade

applications are fully developed, robust, and scalable tools

ready for real-world deployment, as highlighted in [P3].

2) Tool Availability: Open-source tools, made publicly

available through platforms like GitHub, enable reuse and

collaboration, as seen in [P12], [P51], [P61], [P71]. Proprietary

tools, such as those discussed in [P27], have restricted access

and are not publicly available. However, the majority of PSs

(74%) provide no information on tool availability, limiting

reproducibility and reuse.

IX. CHALLENGES IN USING ML APPROACHES (RQ5)

Machine learning has shown potential in supporting various

phases of microservices migration. However, several chal-

lenges limit its effectiveness and broader adoption. These

challenges were derived through manual analysis of the pri-

mary studies (PSs), specifically by reviewing: i) the Discussion

section, ii) the Threats to Validity section, iii) the Future

Work section, and iv) the Conclusion section of each study.

Only challenges explicitly reported by the study authors,

rather than inferred, were considered to ensure objectivity.

The extracted challenges range from technical complexities to

data quality issues, scalability concerns, integration difficulties,

and specialized skill requirements. This section discusses these

challenges and explores possible solutions.

A. Technical Complexities

One of the primary challenges in applying ML to software

migration is handling the variability and complexity of legacy

systems. Identifying service boundaries within monolithic ar-

chitectures remains a difficult task, often leading to suboptimal

service decomposition that affects system performance, scal-

ability, and maintainability [P9], [P49], [P65]. Nunes et al.

[P65] emphasize the need to focus on transactional contexts

rather than structural dependencies when decomposing mono-

lithic systems. Their approach aims to preserve business logic

while enabling effective service extraction. Similarly, Rathod

et al. [P49] propose using Relational Topic Modeling (RTM)

to combine structural dependencies with semantic analysis,

ensuring that refactoring operations improve design quality.

Potential Solution: A hybrid approach combining ML

techniques with domain-driven design and expert knowledge

14

can refine results and ensure practical applicability. Increasing

model explainability can also help software architects validate

and refine service decomposition outcomes.

B. Data Quality and Availability

ML models rely on diverse datasets, including source code

repositories, execution traces, logs, and performance metrics.

However, data unavailability, inconsistency, incompleteness,

and noise significantly impact the accuracy and reliability of

ML-based approaches [P7], [P8], [P11]–[P13], [P18], [P22],

[P28], [P29], [P31], [P32], [P38], [P41], [P44], [P45], [P47],

[P49], [P50], [P53]–[P55], [P58], [P59], [P62], [P65], [P67],

[P73]–[P76]. Mathai et al. [P58] highlight the dependency

of decomposition techniques on external artifacts, such as

runtime traces and commit histories, which are often in-

complete or unavailable. Similarly, Bajaj et al. [P45] stress

that inconsistent SDLC artifacts, including use case models

and functional requirements, pose challenges in greenfield

developments. Beyond data quality issues, the lack of data

also plays a critical role in shaping the type of machine

learning techniques. The scarcity of large, labeled datasets

likely limited the use of deep learning techniques, favoring

classical ML and graph-based models instead.

Potential Solution: Robust data preprocessing pipelines,

data augmentation techniques, and validation mechanisms can

mitigate inconsistencies and improve reliability. Establishing

standardized datasets for benchmarking ML models can also

facilitate the development of more robust approaches.

C. Scalability Concerns

Scalability becomes a critical issue when ML models are

applied to large and complex monolithic systems. These

models often experience increased computational overhead,

leading to performance bottlenecks and delays in the mi-

gration process [P4], [P6], [P17]–[P20], [P23]–[P26], [P29],

[P31], [P33], [P35], [P40], [P44], [P48], [P49], [P51], [P54],

[P55], [P66], [P69], [P72], [P75]. Tong et al. [P24] discuss

the inefficiencies of centralized ML strategies in edge-cloud

environments, where distributed architectures complicate data

collection and synchronization. These challenges highlight the

need for efficient processing strategies to handle large-scale

migration tasks.

Potential Solution: Scalable ML frameworks, distributed

computing, and incremental learning approaches can enhance

efficiency. Optimized data vectorization and clustering tech-

niques can also reduce computational costs.

D. Integration Complexities

Integrating ML into migration workflows is complex due

to the diversity of tools, platforms, and architectures involved

[P22], [P26], [P48], [P65]. Lv et al. [P48] introduce a Graph

Convolutional Network (GCN) combined with deep reinforce-

ment learning (DRL) to optimize microservice deployment.

While this approach enhances decision-making, its integration

into existing migration frameworks remains challenging. Ray

et al. [P26] explore ML-driven microservice placement strate-

gies in edge computing, emphasizing the need for adaptive,

automated decision-making processes.

Potential Solution: Developing modular ML components

with standardized APIs can improve interoperability. Using

containerization and microservices for ML components sim-

plifies deployment and integration with existing architectures.

E. Specialized Skills and Resource Requirements

ML-based migration requires expertise in both machine

learning and software engineering, which many development

teams lack [P13], [P15], [P18], [P20]–[P22], [P40], [P42],

[P48], [P52], [P58], [P68], [P70], [P74], [P75]. Santos et

al. [P40] highlight the complexity of implementing ensemble

learning models for performance forecasting, while Dehghani

et al. [P70] emphasize the difficulty of applying AI-based

migration techniques due to their reliance on reinforcement

learning and neural networks.

Potential Solution: Combining specialized training for

developers with thoughtfully designed black-box tools that

abstract technical complexity while preserving essential con-

trols, supported by cross-disciplinary collaboration between

software engineers and ML practitioners.

X. DISCUSSION

Figure 6 presents a high-level classification derived from

our answers to the research questions, summarising the key

findings discussed in the previous sections. Building on this

classification, we further analyse the four core dimensions

addressed by our study, including Phases, Input Types, ML

Approaches, and Evaluation Methods. In addition to exam-

ining each dimension independently, we conduct a cross-

dimension analysis to reveal how these aspects co-occur across

the selected primary studies. Finally, we synthesise these in-

sights into concrete recommendations to support practitioners

and researchers in effectively applying ML techniques during

migration.

A. Phases

Our findings highlight that Identification is the phase in

which ML approaches have been the most applied by re-

searchers, with 39 PSs addressing automating this phase. It is

followed by Monitoring (28 PSs) and Deployment (12 PSs),

reflecting the research community’s emphasis on defining mi-

croservices, monitoring their functionality, and ensuring their

deployment into production environments. The pre-migration

is perceived as straightforward or reliant on domain-specific

knowledge, which limits its appeal to academic exploration.

Also, the variability in business logic and technical landscapes

across domains makes it challenging to generalise findings,

further discouraging research. Additionally, we found no PSs

proposing an ML-based approach to assist the Packaging

phase. This phase remains largely overlooked, despite rely-

ing on extensive code generation and refactoring—both of

which are still predominantly manual and time-consuming.

Earlier machine learning approaches struggled to automate

15

Fig. 6: ML Usage in Migration: A Classification Overview

this phase effectively. However, the advent of Large Language

Models (LLMs) presents new opportunities to address these

challenges. LLMs have the potential to automate substantial

aspects of the code generation process, such as API generation,

offering solutions that are not only automated but also more

consistent and accurate [41]. This shift highlights an opportu-

nity for future research to explore the potential integration of

LLMs into the packaging phase to assist automation efforts.

While their actual effectiveness in this context remains to

be empirically validated, recent successes of LLMs in tasks

such as code generation, bug fixing, and software refactoring

suggest that they may offer valuable capabilities for addressing

migration-related challenges [42], [43]

B. Input

The effectiveness of any machine learning-based approach,

including those for microservices migration, depends on the

quality, diversity, and preparation of its input data. The classifi-

cation categorises inputs into five main types: domain artefacts

(e.g., API documentation), Executable software model (e.g.,

source code), model artifacts (e.g., use cases), runtime artefacts

(e.g., resource metrics, logs), and technical artifacts (e.g.,

Servers information). Among these, runtime artifacts are the

most frequently utilised, appearing in 49 PSs, because they are

crucial for capturing dynamic system behaviours, making them

particularly valuable in monitoring and deployment phases. In

contrast, domain and model artifacts are predominantly used

during the identification and pre-migration phases.

Data sources vary, with most PSs relying on open-source

data (50 PSs), due to their accessibility. Real-world data

sources (28 PSs), and synthetic data sources (11 PSs) provide

additional data, though their use is limited by accessibility and

confidentiality challenges. The limited use of real-world and

industrial systems justifies the gap in using academic findings

on practical, large-scale applications.

Preprocessing steps, including data extraction (39 PSs), data

cleaning (24 PSs), code analysis (47 PSs), and dependency

modelling (21 PSs), are used for preparing data for machine

learning models. These steps ensure that raw data is trans-

formed into a structured and meaningful format, enabling

models to effectively analyse system components, dependen-

cies, and relationships. While these preprocessing techniques

have been explored in various studies, challenges such as

handling incomplete or noisy data and automating complex

code analysis remain critical areas for further research.

C. Approaches

The PSs employ a diverse range of ML models that we cat-

egorised into classical machine learning, deep learning, graph-

based methods, and reinforcement learning. Among these,

classical machine learning is the most prominent, appearing

in 30 PSs, with clustering, classification, and regression tech-

niques commonly used in the PSs. However, a cross-analysis

of ML technique usage over time (see Figure 7) reveals a

temporal trend: while classical ML dominated earlier works

(before 022), recent PSs show increasing adoption of deep

learning and graph-based approaches. Deep learning is used

particularly in the monitoring phase to model complex behav-

iors and predict root causes of failures, leveraging architectures

such as autoencoders, transformers, and recurrent neural net-

works. Graph-based methods, used in 23 PSs, are particularly

effective in capturing structural relationships between code

components or log traces. Reinforcement learning appears in

19 PSs, mainly in deployment and monitoring phases, where

it is applied for adaptive resource management and anomaly

detection. Supervised learning is predominantly employed in

monitoring, where labeled data is available. Unsupervised

learning techniques are reported in 55 PSs, especially in

the identification phase, where labeled datasets are typically

unavailable. For instance, clustering algorithms like DBSCAN

and K-Means are used in 6 PSs to identify microservices in

monolithic architectures, with evaluation criteria focusing on

cohesion and coupling.

ML models in these PSs leverage a variety of feature

types to enhance different phases of the migration process.

Performance features (24 PSs), such as CPU usage, memory

16

consumption, and response time, are commonly used for

performance prediction, anomaly detection, and deployment

optimisation. Structural Features (51 PSs) enable ML models

to learn structural and relational patterns, facilitating service

decomposition, impact analysis, and dependency resolution.

Semantic features (30 PSs), such as function names, API

descriptions, and business logic embeddings, support domain-

aware clustering and automated service identification by cap-

turing functional similarities. Behavioural features (35 PSs),

including invocation paths, transactional dependencies, and

execution traces, provide insights into runtime behaviour,

helping ML models understand component interactions and

operational patterns. While these feature types enhance model

effectiveness, challenges remain in automating feature extrac-

tion and handling noisy dependencies.

Fig. 7: Trends in ML Models usage across publication years

D. Evaluation

The evaluation of microservices migration approaches relies

on a combination of metrics, benchmarking, and success

criteria. The analysis of evaluation metrics in the reviewed PSs

highlights a strong emphasis on classification and prediction

metrics (45 PSs), which are predominantly used to assess

the accuracy and effectiveness of ML models in microser-

vices identification and anomaly detection. Software design

metrics (23 PSs) follow, focusing on cohesion, coupling,

and modularity to ensure maintainability and architectural

quality, exclusively used in the identification phase. System

behaviour metrics (18 PSs), such as response time and resource

utilisation, are widely used to evaluate the performance and

scalability of migrated microservices. Clustering metrics (12

PSs) provide insights into the quality of service decompo-

sition, ensuring well-formed and meaningful microservices

groupings. In contrast, developer-centric metrics (3 PSs) re-

main underexplored, despite their importance in validating the

practicality and usability of automated migration approaches.

Benchmarking is a key validation method, with direct

method comparisons being the most common (42 PSs), where

approaches are evaluated against state-of-the-art techniques.

Evolutionary method comparisons, which assess how ap-

proaches improve with new features, are significantly less

frequent (6 PSs). Expanding evolutionary benchmarking could

offer deeper insights into model robustness, scalability, and

long-term adaptability.

Tool availability remains a major concern across both

academic and industrial contexts. Among the 81 primary

studies reviewed, only 21 provide open-source implementa-

tions, while 60 do not disclose any accessible tool, severely

limiting reproducibility, evaluation, and practical adoption.

To complement our literature analysis, we conducted a sup-

plementary web search using the query ”microservices mi-

gration” (tool OR platform OR product) (commercial OR

enterprise OR SaaS). This search revealed that three com-

mercial tools exist, notably IBM Mono2Micro, vFunction,

and Commercetools Composable Commerce, which support

aspects of migration such as service boundary detection,

observability-based decomposition, and incremental moderni-

sation. However, these tools are commercially licensed, not

open source, and do not explicitly leverage machine learn-

ing techniques. This reinforces our observation that ML-

driven support for automated migration remains limited, non-

reproducible, and poorly standardised. Future work should

prioritise the development of publicly accessible tools and

transparent ML-based solutions, along with standardised eval-

uation frameworks, to ensure both industrial relevance and

scientific rigour.

E. Cross-Dimensions Analysis

While each research question focused on a specific di-

mension, we extended our analysis with a cross-dimensional

examination to explore how migration phases, input types, ML

models, and evaluation metrics co-occur across the selected

primary studies. To support this analysis, we constructed a

Sankey Diagram (Figure 8) that visualises complete migration

paths derived from the selected primary studies. Each stream

in the diagram corresponds to a unique combination of four

key dimensions: Migration Phase → Input Type → ML Model

→ Evaluation Metric. The width of each stream is proportional

to the number of PSs following that path, while the colour in-

dicates the originating migration phase. An interactive version

of this diagram is available online at this link1, where hover

tooltips display the full path along with the corresponding

number of supporting PSs.

To structure our cross-dimensional analysis, we first iden-

tified the most frequent migration paths across all reviewed

studies. These represent combinations of migration phase,

input type, ML technique, and evaluation metric that occur

most often. Table VI presents the prominent paths reported in

five or more primary studies.

TABLE VI: Most Frequent Migration Paths across Phase,

Input, ML Technique, and Evaluation

Phase Input Type ML Technique Evaluation Metric #PSs

Monitoring Runtime Artifacts Graph Based ML Classification and Prediction 13
Monitoring Runtime Artifacts Deep Learning Classification and Prediction 10
Identification Source Artifacts Classical ML Software Design 7
Identification Source Artifacts Classical ML Clustering 7
Identification Source Artifacts Graph Based ML Software Design 6
Deployment Runtime Artifacts Reinforcement Learning System Behavior 5

1An interactive version of this figure is available at:
https://imen-trabelsi.github.io/SLR-MS-Migration/Cross-RQs-Interactive-Diagram.html.
Hovering over a stream reveals the complete path and the associated number
of PSs.

https://www.ibm.com/cloud/mono2micro
https://www.vfunction.com
https://commercetools.com
https://imen-trabelsi.github.io/SLR-MS-Migration/Cross-RQs-Interactive-Diagram.html
https://imen-trabelsi.github.io/SLR-MS-Migration/Cross-RQs-Interactive-Diagram.html

17

Identification

Source Artifacts

Classical ML

Classification and Prediction

Software Design

Graph Based ML

System Behavior

Model Artifacts

Reinforcement Learning

Monitoring

Runtime Artifacts

Domain Artifacts

Clustering

Deployment

Deep Learning

Developer-CentricTechnical ArtifactsPre-migration

Fig. 8: Cross-dimensions analysis of ML-based migration approaches. Each stream represents a path linking Migration Phase,

Input Type, ML Technique, and Evaluation Metric.

This analysis highlights some dominant paths in how

machine learning is applied across microservices migration

phases. The most frequent migration paths emerge in the mon-

itoring phase. These studies typically rely on runtime artifacts,

such as logs, execution traces, and system-level metrics, and

apply either graph-based ML or deep learning. Graph-based

ML is used in 13 primary studies ([P21], [P28]–[P30], [P32]–

[P34], [P39], [P41], [P69], [P73], [P74], [P77]). Deep learning

is used in 10 PSs ([P17], [P18], [P31], [P52], [P59], [P60],

[P68], [P76], [P78], [P79]). Both configurations are primarily

evaluated using classification and prediction metrics, such as

precision, recall, F1-score, and AUC. These studies address

anomaly detection, fault prediction, or behavioral monitoring

in production environments.

In the identification phase, the dominant input remains

source artifacts, including source code, call graphs, and code

embeddings. Classical machine learning techniques such as K-

Means, DBSCAN, and Agglomerative Clustering are applied

in conjunction with either software design metrics 7 PSs ([P9],

[P11], [P51], [P56], [P57], [P61], [P63]) apply classification

models to source code, or clustering to model-level inputs such

as use-case diagrams and class diagrams.

In the deployment phase, most approaches rely on runtime

artifacts and leverage reinforcement learning for dynamic

optimisation, resource allocation, or autoscaling. These appear

in 5 studies ([P14], [P20], [P22], [P26], [P48]), where the

evaluation relies on system behavior metrics such as response

time, memory consumption, or CPU utilisation. A few addi-

tional studies (e.g., [P16]) use classical ML or deep learning,

but they are less common in this phase.

Several underexplored paths also emerged. These include

configurations where domain-level artifacts (e.g., API docu-

mentation) are combined with classical ML and evaluated with

system behavious metrics (e.g., [P3]) or cases where runtime

input is introduced in the identification phase to guide service

boundary prediction through behavioral insight (e.g., [P37],

[P46]).

Beyond full migration paths, we examined pairwise relation-

ships between individual dimensions to surface finer-grained

patterns. For instance, input types vary significantly across

phases. Source artifacts dominate the identification phase in

26 PSs, where they support architectural decomposition and

service extraction (e.g., [P5], [P11], [P49], [P61], [P71]).

Runtime artifacts are prevalent in both monitoring and deploy-

ment, used to inform operational decisions or detect abnormal

behaviors [P35], [P75], [P78]. Domain and model artifacts

18

are primarily used in pre-migration or identification, reflecting

their importance in early planning [P2], [P43]. Configuration

artifacts appear almost exclusively in deployment studies that

target environmental tuning or resource scheduling [P22],

[P26].

Similarly, ML technique choices differ markedly across

phases. Classical ML is most prominent in the identification

phase, used for clustering and classification (e.g., [P11], [P37],

[P46], [P66]). Graph-based models also used for the identifi-

cation phase, particularly when structural relations are central

to the decomposition logic [P12], [P65]. Approaches for mon-

itoring, on the other hand, favor deep learning techniques that

can model temporal or sequential patterns (e.g., [P34], [P41],

[P60], [P74]). Reinforcement learning appears predominantly

in the deployment phase, applied in contexts requiring adaptive

policy learning [P14], [P20], [P22], [P26], [P48].

Evaluation practices reflect these distinctions. Studies in the

identification phase rely mostly on software design metrics,

such as modularity, cohesion, and coupling, which evaluate

the structural quality of identified microservices candidates

[P5], [P49], [P53], [P56], [P62], [P64], [P71]. Most monitoring

studies (17 out of 18 PSs) rely on classification and predic-

tion metrics such as precision, recall, F1-score, and AUC.

However, [P24] validated their approach using only system

behavior metrics, including Average Waiting Time (AWT),

SLA violation rate, latency, and the standard deviation of

autoscaling performance. Other studies [P17], [P21], [P34]

combined classification metrics with system behavior metrics.

All deployment studies apply system behavior metrics such as

latency or throughput to assess performance improvements and

adaptability. Developer-centric or human-in-the-loop metrics

are rare, particularly in pre-migration [P2], and during the

identification phase [P3], [P37], [P80].

We also examined input–technique pairings. Source artifacts

are mostly combined with classical ML and, to a lesser extent,

graph-based ML [P12], [P39], [P81]. Runtime artifacts drive

the use of deep learning and reinforcement learning, given

their rich behavioral data and need for temporal modeling

[P14], [P15], [P20], [P48], [P69], [P78]. Domain artifacts

are used with supervised techniques aimed at classification

or prediction tasks during specially during the indentification

phase [P10], [P47].

F. Recommendations for Researchers and Practitioners

Based on the insights gathered, we provide recommenda-

tions to address the challenges of using machine learning dur-

ing the migration from monolithic systems to microservices.

a) Recommendations for Researchers: We present re-

searchers with current challenges and future research direc-

tions to address key obstacles and enhance the effectiveness

of ML-based migration approaches.

Explore hybrid ML models that offer a promising ap-

proach for improving microservice identification, deploy-

ment optimisation, and anomaly detection by leveraging the

strengths of multiple learning paradigms.

Rationale: Findings from RQ4 emphasise the need for hybrid

models to tackle the challenges of microservices migration.

For example, graph-based ML models (e.g., GNNs) combined

with clustering algorithms (e.g., DBSCAN, K-Means) can

enhance microservice identification by capturing both struc-

tural dependencies and functional clustering. For deployment

optimisation, integrating reinforcement learning (RL) with

predictive models (e.g., LSTMs) can enable dynamic resource

allocation and adaptive scaling based on workload patterns.

Future research should focus on implementing hybrid ML

techniques that enhance automation, adaptability, and inter-

pretability in microservices migration, ensuring they effec-

tively handle evolving architectures, dynamic workloads, and

complex service interactions while maintaining high efficiency.

Address data accessibility issues by collaborating with

industry stakeholders to create anonymised datasets.

Rationale: Insights from RQ2 (Input) and RQ5 (Data Avail-

ability) underscore the importance of data accessibility and

quality to ensure the effectiveness and reliability of ML

approaches. Collaboration with industry stakeholders facil-

itates the creation of datasets that reflect real-world com-

plexities while safeguarding privacy. Researchers should de-

velop standardised anonymisation techniques, propose privacy-

preserving data-sharing frameworks, and advocate for open-

access benchmark datasets to improve reproducibility. Addi-

tionally, they should engage with industry partners to establish

domain-specific data collection methodologies that ensure ML

models are trained on representative and diverse datasets.

Standardise evaluation metrics by developing universal

benchmarking standards and engaging with academic and

industrial communities to define success criteria for migration.

Rationale: Standardised metrics ensure fairness, reproducibil-

ity, and comparability across research efforts, addressing in-

consistencies in assessing ML-based migration approaches.

Insights from RQ4 (Evaluation) and RQ5 (Evaluation Chal-

lenges) emphasize the necessity of well-defined benchmarks

to advance the field effectively.

Explore the potential of ML in underexplored migration

phases, including both pre-migration and packaging. While

our findings (RQ1) show that most ML-based approaches

focus on identification, deployment, and monitoring, we ob-

served significantly fewer efforts targeting the earlier phases,

particularly business process analysis and modernisation, or

the intermediate steps like code refactoring and service pack-

aging.

Rational: Targeted research in these areas could provide

tangible benefits, especially where current approaches rely

heavily on manual expertise. For instance, the use of ML and

AI techniques (e.g., NLP, process mining, or large language

models) to support automated business process understanding

and transformation could bridge the gap between legacy pro-

cesses and microservice-oriented design. Similarly, leveraging

ML to automate packaging and infrastructure preparation

(e.g., configuration, API scaffolding) could reduce migration

cost and risk. We encourage future work to investigate these

directions where ML’s strengths (pattern discovery, learning

from examples, code synthesis) align with clearly defined and

repetitive tasks.

b) Recommendations for Practitioners: From the in-

sights we collected, we provide practical guidance to help

19

practitioners overcome key challenges and optimise the ap-

plication of ML techniques during migration.

Adopt hybrid approaches that combine machine-learning

techniques with business elements to address critical chal-

lenges in microservice migration.

Rationale: Drawing from our findings in RQ4 and RQ5,

hybrid approaches are essential for resolving challenges such

as defining microservice boundaries, determining appropriate

service sizes, and selecting optimal deployment resources.

These approaches integrate the strengths of machine-learning

techniques with business elements, enabling a balanced reso-

lution of technical and business challenges. By aligning ML

techniques usage with specific business objectives through it-

erative workflows and cross-disciplinary discussions, organisa-

tions can improve the accuracy and relevance of the proposed

approach. Adaptive frameworks, incorporating user feedback

and domain knowledge, further ensure deployment optimisa-

tion, cost-efficiency, and alignment with organisational goals.

Invest in data quality by prioritising high-quality datasets

and establishing workflows for preprocessing and validation.

Rationale: Findings from RQ2 and RQ5 underscore that high-

quality data is critical for the reliability and effectiveness of

ML models during migration phases. Practical workflows for

validation and robust preprocessing in datasets. Utilising effec-

tive tools for cleaning and structuring data ensures its usability,

while collaboration with domain experts aligns datasets with

business objectives. This alignment improves the reliability of

machine-learning techniques and ensures that the outcomes

meet organisational needs.

Adapt scalable ML approaches to address the complexi-

ties of microservices migration.

Rationale: Findings from RQ4 and RQ5 emphasise that scal-

able ML approaches are essential for managing the increasing

complexities of microservices migration as software systems

are getting larger. Distributed computing techniques enable ef-

ficient processing of large-scale systems, reducing processing

time and improving the scalability of the proposed approach.

Monitoring tools can track resource usage, predict workload

trends, and dynamically optimise resource allocation, ensuring

efficient resource management during deployment. By aligning

these approaches with microservices architecture constraints,

organisations can minimise downtime, reduce operational bot-

tlenecks, and ensure scalability to more complex systems.

Upskill teams through continuous learning initiatives tai-

lored to both machine-learning and software engineers

Rationale: Findings from RQ5 highlight that successful mi-

croservices migration requires teams to possess a blend of

specialised skills and collaborative expertise. Comprehensive

learning initiatives, such as hands-on workshops, scenario-

based case studies, and real-world projects, bridge the gap

between theoretical knowledge and practical application. Fos-

tering cross-functional collaboration among domain experts,

ML engineers, and software architects ensures seamless team-

work and alignment. By keeping teams updated with the

latest technological advancements, organisations can empower

them to tackle both technical and collaborative challenges

effectively, driving successful migration outcomes.

XI. THREATS TO VALIDITY

In this section, we identify potential threats associated

with construct validity, internal validity, external validity, and

conclusion validity.

a) Construct Validity: This aspect focuses on the sources

used and the approach adopted for data collection. It includes

the selection process of primary studies and the methodology

employed to extract data in relation to the research questions.

Exclusion of relevant studies: The possibility of overlooking

relevant studies poses a threat to the study. Since our search

was based on titles and keywords, there is a chance that

some relevant studies were unintentionally excluded. The

effectiveness of our search depends largely on how well digital

libraries index research papers. To address this issue, we used

seven widely recognized and comprehensive databases for

literature reviews [34]. Additionally, we conducted four rounds

of snowballing to identify further potentially relevant studies.

Selection bias in PSs: The process of selecting PSs may

have led to the exclusion of relevant studies. As the selection

was conducted manually, subjective judgment could have

influenced the final set of chosen studies. To mitigate this

risk, we clearly defined the study’s objectives and research

questions beforehand, adhering to the PRISMA guidelines. We

also established well-defined inclusion and exclusion criteria.

Bias in data extraction: Since data extraction was performed

manually, there is a risk of personal bias affecting the results.

To reduce this risk, we designed a structured data collection

form. Two researchers independently carried out the extraction

process following the predefined form. We ensured consistency

through interrater agreement and held multiple discussions

involving all authors to reach a consensus. Furthermore, incon-

sistencies in terminology across PSs posed another challenge.

We addressed this by systematically discussing and agreeing

upon a standardized vocabulary.

Scope Boundary Definitions: Our study exclusively examined

ML-based approaches. Consequently, we excluded approaches

that do not explicitly involve ML techniques—such as those

based solely on process mining or architectural heuristics. This

restricted scope enabled a focused analysis of the specific

characteristics and limitations of ML techniques. However,

we acknowledge that non-ML approaches, including process

mining methods (e.g., [44]), can play a complementary role.

In particular, process mining can generate valuable artifacts

such as event logs or execution traces, which may serve as

input to ML models. Future research could beneficially explore

such hybrid combinations, capitalizing on the complementary

strengths of process-oriented and learning-based techniques.

b) Internal Validity: Internal validity pertains to the

methods employed in this study and the accuracy of the

conclusions derived from them.

Review completeness: This study primarily investigates the

use of ML techniques in the migration process: phases, input,

approach, evaluation, and challenges. Some PSs may not

provide exhaustive details on all these aspects. To minimize

this limitation, we included only those studies that can answer

at least three RQs.

Research methodology: The methodology used in this study

20

may introduce certain biases, potentially impacting the re-

liability and validity of the findings. To mitigate this risk,

we followed the updated PRISMA guidelines and carefully

curated our study selection process to ensure relevance. The

inclusion and exclusion criteria were rigorously defined and

reviewed by all authors to enhance objectivity.

c) External Validity: This concerns the extent to which

our findings can be generalized across all migration ap-

proaches that use ML. Our review focuses exclusively on

academic literature, meaning that industry practices may not

be fully represented if they were not documented in research

papers. Additionally, we only considered studies published

within a specific timeframe, which could limit the general-

izability of our conclusions. Nonetheless, we plan to conduct

an industry-focused study to supplement these findings.

d) Conclusion Validity: This aspect pertains to the

soundness of the conclusions drawn from the extracted data.

To ensure validity, we conducted a thorough analysis of the

extracted data and engaged in multiple discussion sessions to

cross-verify our conclusions. We strictly based our findings

on the data derived from the selected PSs, ensuring that our

conclusions remain well-supported and justified.

XII. CONCLUSION

This systematic literature review examines the role of ma-

chine learning in automating the migration from monolithic

systems to microservices. Using a PRISMA-based method-

ology, we analyzed 81 primary studies to understand the

automated phases, the types of inputs used, the ML techniques

applied, the evaluation methods used, and the challenges

encountered. Our findings indicate that ML-driven migration

studies have primarily focused on service identification, mon-

itoring, and deployment, while pre-migration analysis and mi-

croservice packaging remain largely unexplored. In particular,

automating code generation and packaging tasks has received

limited attention, despite the potential of emerging technolo-

gies such as Large Language Models. Additionally, runtime

artifacts serve as the dominant data source, yet the scarcity of

real-world datasets raises concerns about the practical appli-

cability of ML techniques. Unsupervised learning remains the

most common approach, particularly for service identification

and anomaly detection, but evaluation practices vary widely,

with system adaptability and real-world validation often over-

looked. Despite ML’s potential to automate migration tasks,

key challenges persist, including data availability, scalability,

tool support, and the absence of standardized benchmark-

ing. Addressing these challenges requires further research

on underexplored migration phases, particularly pre-migration

planning and packaging. Enhancing data accessibility through

industry collaboration, privacy-preserving data-sharing frame-

works, and the development of benchmark datasets will be

crucial. Furthermore, exploring hybrid ML approaches that

integrate multiple learning paradigms could improve accuracy

and adaptability in migration processes. By addressing these

gaps, future research can contribute to more effective and

scalable ML-driven migration solutions.

REPLICATION PACKAGE

The replication package can be accessed using the following

DOI: 10.5281/zenodo.15723658

ACKNOWLEDGMENTS

The Canada Research Chair program partly funded this

work.

REFERENCES

[1] N. Ali, S. Baker, R. O’Crowley, S. Herold, and J. Buckley, “Architecture
consistency: State of the practice, challenges and requirements,” Empiri-

cal Software Engineering, vol. 23, pp. 224–258, 2018.

[2] N. Dragoni, I. Lanese, S. T. Larsen, M. Mazzara, R. Mustafin, and
L. Safina, “Microservices: How to make your application scale,” IEEE

Software, vol. 34, no. 5, pp. 81–85, 2017.

[3] J. Fritzsch, J. Bogner, S. Wagner, and A. Zimmermann, “Microservices
migration in industry: intentions, strategies, and challenges,” in 2019

IEEE International Conference on Software Maintenance and Evolution

(ICSME). IEEE, 2019, pp. 481–490.

[4] F. Tapia, M. Á. Mora, W. Fuertes, H. Aules, E. Flores, and T. Toulkeridis,
“From monolithic systems to microservices: A comparative study of
performance,” Applied sciences, vol. 10, no. 17, p. 5797, 2020.

[5] Y. Abgaz, A. McCarren, P. Elger, D. Solan, N. Lapuz, M. Bivol, G. Jack-
son, M. Yilmaz, J. Buckley, and P. Clarke, “Decomposition of monolith
applications into microservices architectures: A systematic review,” IEEE

Transactions on Software Engineering, vol. 49, no. 8, pp. 4213–4242,
2023.

[6] S. Sarkar, G. Vashi, and P. Abdulla, “Towards transforming an industrial
automation system from monolithic to microservices,” in 2018 IEEE

23rd International Conference on Emerging Technologies and Factory

Automation (ETFA), vol. 1. IEEE, 2018, pp. 1256–1259.

[7] M. Abdellatif, A. Shatnawi, H. Mili, N. Moha, G. El Boussaidi, G. Hecht,
J. Privat, and Y.-G. Guéhéneuc, “A taxonomy of service identification ap-
proaches for legacy software systems modernization,” Journal of Systems

and Software, vol. 173, p. 110868, 2021.

[8] N. Toumi, M. Bagaa, and A. Ksentini, “Machine learning for service
migration: a survey,” IEEE Communications Surveys & Tutorials, vol. 25,
no. 3, pp. 1991–2020, 2023.

[9] I. Oumoussa and R. Saidi, “Evolution of Microservices Identification in
Monolith Decomposition: A Systematic Review,” IEEE Access, 2024.

[10] J. Fritzsch, J. Bogner, S. Wagner, and A. Zimmermann, “Microservices
migration in industry: intentions, strategies, and challenges,” in 2019

IEEE International Conference on Software Maintenance and Evolution

(ICSME). IEEE, 2019, pp. 481–490.

[11] S. F. Ahmed, M. S. B. Alam, M. Hassan, M. R. Rozbu, T. Ishtiak,
N. Rafa, M. Mofijur, A. Shawkat Ali, and A. H. Gandomi, “Deep learning
modelling techniques: current progress, applications, advantages, and
challenges,” Artificial Intelligence Review, vol. 56, no. 11, pp. 13 521–
13 617, 2023.

[12] M. J. Page, J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann,
C. D. Mulrow, L. Shamseer, J. M. Tetzlaff, E. A. Akl, S. E. Brennan, et al.,
“The PRISMA 2020 Statement: An Updated Guideline For Reporting
Systematic Reviews,” International journal of surgery, vol. 88, p. 105906,
2021.

[13] S. Moreschini, S. Pour, I. Lanese, D. Balouek, J. Bogner, X. Li,
F. Pecorelli, J. Soldani, E. Truyen, and D. Taibi, “AI Techniques in the
Microservices Life-Cycle: a Systematic Mapping Study,” Computing, vol.
107, no. 4, p. 100, 2025.

[14] D. Narváez, N. Battaglia, A. Fernández, and G. Rossi, “Designing
Microservices Using AI: A Systematic Literature Review,” Software,
vol. 4, no. 1, p. 6, 2025.

[15] A. M. Saucedo, G. Rodrı́guez, F. G. Rocha, and R. P. dos Santos,
“Migration of monolithic systems to microservices: A systematic mapping
study,” Information and Software Technology, p. 107590, 2024.

[16] ——, “Migration of monolithic systems to microservices: A systematic
mapping study,” Information and Software Technology, p. 107590, 2024.

[17] A. Razzaq and S. A. Ghayyur, “A systematic mapping study: The new
age of software architecture from monolithic to microservice architec-
ture—awareness and challenges,” Computer Applications in Engineering

Education, vol. 31, no. 2, pp. 421–451, 2023.

https://doi.org/10.5281/zenodo.15723658

21

[18] Y. Abgaz, A. McCarren, P. Elger, D. Solan, N. Lapuz, M. Bivol,
G. Jackson, M. Yilmaz, J. Buckley, and P. Clarke, “Decomposition
of monolith applications into microservices architectures: A systematic
review,” IEEE Transactions on Software Engineering, vol. 49, no. 8, pp.
4213–4242, 2023.

[19] V. Velepucha and P. Flores, “Monoliths to microservices-migration prob-
lems and challenges: A SMS,” in 2021 Second International Conference

on Information Systems and Software Technologies (ICI2ST). IEEE,
2021, pp. 135–142.

[20] V. Bushong, A. S. Abdelfattah, A. A. Maruf, D. Das, A. Lehman,
E. Jaroszewski, M. Coffey, T. Cerny, K. Frajtak, P. Tisnovsky, et al., “On
microservice analysis and architecture evolution: A systematic mapping
study,” Applied Sciences, vol. 11, no. 17, p. 7856, 2021.

[21] F. Ponce, G. Márquez, and H. Astudillo, “Migrating from monolithic ar-
chitecture to microservices: A Rapid Review,” in 2019 38th International

Conference of the Chilean Computer Science Society (SCCC). IEEE,
2019, pp. 1–7.

[22] J. Fritzsch, J. Bogner, A. Zimmermann, and S. Wagner, “From monolith
to microservices: A classification of refactoring approaches,” in Software

Engineering Aspects of Continuous Development and New Paradigms

of Software Production and Deployment: First International Workshop,

DEVOPS 2018, Chateau de Villebrumier, France, March 5-6, 2018,

Revised Selected Papers 1. Springer, 2019, pp. 128–141.

[23] H. C. d. Silva Filho and G. d. Figueiredo Carneiro, “Strategies reported
in the literature to migrate to microservices based architecture,” in 16th

International Conference on Information Technology-New Generations

(ITNG 2019). Springer, 2019, pp. 575–580.

[24] A. Mparmpoutis and G. Kakarontzas, “Using Database Schemas of
Legacy Applications for Microservices Identification: A Mapping Study,”
in Proceedings of the 6th International Conference on Algorithms, Com-

puting and Systems, 2022, pp. 1–7.

[25] P. Di Francesco, P. Lago, and I. Malavolta, “Migrating towards mi-
croservice architectures: an industrial survey,” in 2018 IEEE international

conference on software architecture (ICSA). IEEE, 2018, pp. 29–2909.

[26] M. Kalske, N. Mäkitalo, and T. Mikkonen, “Challenges when moving
from monolith to microservice architecture,” in Current Trends in Web

Engineering: ICWE 2017 International Workshops, Liquid Multi-Device

Software and EnWoT, practi-O-web, NLPIT, SoWeMine, Rome, Italy, June

5-8, 2017, Revised Selected Papers 17. Springer, 2018, pp. 32–47.

[27] V. Velepucha and P. Flores, “Monoliths to microservices-migration prob-
lems and challenges: A SMS,” in 2021 Second International Conference

on Information Systems and Software Technologies (ICI2ST). IEEE,
2021, pp. 135–142.

[28] R. Capuano and H. Muccini, “A systematic literature review on migra-
tion to microservices: a quality attributes perspective,” in 2022 IEEE 19th

International Conference on Software Architecture Companion (ICSA-C).
IEEE, 2022, pp. 120–123.

[29] J. Kazanavičius and D. Mažeika, “Migrating legacy software to mi-
croservices architecture,” in 2019 Open Conference of Electrical, Elec-

tronic and Information Sciences (eStream). IEEE, 2019, pp. 1–5.

[30] M. J. Page, J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann,
C. D. Mulrow, L. Shamseer, J. M. Tetzlaff, E. A. Akl, S. E. Brennan, et al.,
“The PRISMA 2020 Statement: An Updated Guideline For Reporting
Systematic Reviews,” International journal of surgery, vol. 88, p. 105906,
2021.

[31] M. J. Page, D. Moher, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D.
Mulrow, L. Shamseer, J. M. Tetzlaff, E. A. Akl, S. E. Brennan, et al.,
“PRISMA 2020 Explanation And Elaboration: Updated Guidance And
Exemplars For Reporting Systematic Reviews,” bmj, vol. 372, 2021.

[32] B. A. Kitchenham, L. Madeyski, and D. Budgen, “SEGRESS: Software
Engineering Guidelines For Reporting Secondary Studies,” IEEE Trans-

actions on Software Engineering, 2022.

[33] A. Cooke, D. Smith, and A. Booth, “Beyond PICO: the SPIDER Tool
For Qualitative Evidence Synthesis,” Qualitative health research, vol. 22,
no. 10, pp. 1435–1443, 2012.

[34] T. Dyba, T. Dingsoyr, and G. K. Hanssen, “Applying Systematic Reviews
To Diverse Study Types: An Experience Report,” in First international

symposium on empirical software engineering and measurement (ESEM

2007). IEEE, 2007, pp. 225–234.

[35] H. Vural, M. Koyuncu, and S. Guney, “A systematic literature review
on microservices,” in Computational Science and Its Applications–ICCSA

2017: 17th International Conference, Trieste, Italy, July 3-6, 2017,

Proceedings, Part VI 17. Springer, 2017, pp. 203–217.

[36] J. Cohen, “Weighted Kappa: Nominal Scale Agreement Provision For
Scaled Disagreement Or Partial Credit,” Psychological bulletin, vol. 70,
no. 4, p. 213, 1968.

[37] S. Li, H. Zhang, Z. Jia, C. Zhong, C. Zhang, Z. Shan, J. Shen, and M. A.
Babar, “Understanding and addressing quality attributes of microservices
architecture: A Systematic literature review,” Information and software

technology, vol. 131, p. 106449, 2021.
[38] T. Dybå and T. Dingsøyr, “Empirical studies of agile software devel-

opment: A systematic review,” Information and Software Technology,
vol. 50, no. 9-10, pp. 833–859, 2008.

[39] K. P. Murphy, Probabilistic machine learning: an introduction. MIT
press, 2022.

[40] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” IEEE transactions on

neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.
[41] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo,

J. Grundy, and H. Wang, “Large language models for software engi-
neering: A systematic literature review,” ACM Transactions on Software

Engineering and Methodology, 2023.
[42] M. Chen, H. Touvron, T. Lavril, et al., “Code llama: Open foundation

models for code,” arXiv preprint arXiv:2308.12950, 2023.
[43] W. U. Ahmad, S. Chakraborty, S. Yuan, and G. Neubig, “A context-

aware natural language interface for code transformation tasks,” in Pro-

ceedings of the 45th International Conference on Software Engineering

(ICSE), 2023.
[44] L. Baresi, M. Garriga, and A. De Renzis, “Microservices identification

through interface analysis,” in Service-Oriented and Cloud Computing:

6th IFIP WG 2.14 European Conference, ESOCC 2017, Oslo, Norway,

September 27-29, 2017, Proceedings 6. Springer, 2017, pp. 19–33.
[45] E. Djogic, S. Ribic, and D. Donko, “Monolithic to microservices

redesign of event driven integration platform,” in 2018 41st International

Convention on Information and Communication Technology, Electronics

and Microelectronics (MIPRO). IEEE, 2018, pp. 1411–1414.
[46] I. Oumoussa, S. Faieq, R. Saidi, and M. Daoud, “An nlp-based approach

for identifying microservices from a set of business processes,” SSRN

Electronic Journal, 01 2022.
[47] C.-Y. Fan and S.-P. Ma, “Migrating monolithic mobile application to mi-

croservice architecture: An experiment report,” in 2017 ieee international

conference on ai & mobile services (aims). IEEE, 2017, pp. 109–112.
[48] D. Faustino, N. Gonçalves, M. Portela, and A. R. Silva, “Stepwise

migration of a monolith to a microservice architecture: Performance and
migration effort evaluation,” Performance Evaluation, vol. 164, p. 102411,
2024.

SELECTED PRIMARY STUDIES (PSS)

[P1] R. Nakazawa, T. Ueda, M. Enoki, and H. Horii, “Visualization Tool
for Designing Microservices with the Monolith-First Approach,” 2018

IEEE Working Conference on Software Visualization (VISSOFT), pp.
32–42, 2018.

[P2] A. Alshammari, A. Almadhor, S. Qasem, J. Alkhateeb, and K. Amjad,
“High-performance computing-enabled probabilistic framework for mi-
gration from monolithic to microservices architecture using genetic
algorithms,” Soft Computing, 2023.

[P3] M. Gysel, L. Kölbener, W. Giersche, and O. Zimmermann, “Service
Cutter: A Systematic Approach to Service Decomposition,” Lecture

Notes in Computer Science, pp. 185–200, 2016.
[P4] M. Kamimura, K. Yano, T. Hatano, and A. Matsuo, “Extracting

Candidates of Microservices from Monolithic Application Code,” 2018

25th Asia-Pacific Software Engineering Conference (APSEC), pp. 571–
580, 2018.

[P5] T. Zhong, Y. Teng, S. Ma, J. Chen, and S. Yu, “A Microservices
Identification Method Based on Spectral Clustering for Industrial
Legacy Systems,” 2023 IEEE Globecom Workshops (GC Wkshps), pp.
1331–1337, 2023.

[P6] M. Daoud, A. El Mezouari, N. Faci, D. Benslimane, Z. Maamar,
and A. El Fazziki, “A multi-model based microservices identification
approach,” Journal of Systems Architecture, vol. 118, p. 102200, 2021.

[P7] M. Saidi, A. Tissaoui, D. Benslimane, and S. Faiz, “Automatic
Microservices Identification Across Structural Dependency,” Lecture

Notes in Networks and Systems, pp. 386–395, 2022.
[P8] M. Daoud, A. E. Mezouari, N. Faci, D. Benslimane, Z. Maamar, and

A. E. Fazziki, “Automatic Microservices Identification from a Set of
Business Processes,” Smart Applications and Data Analysis, pp. 299–
315, 2020.

[P9] V. Faria and A. R. Silva, “Code vectorization and sequence of accesses
strategies for monolith microservices identification,” pp. 19–33, 2023.

[P10] X. Sun, S. Boranbaev, S. Han, H. Wang, and D. Yu, “Expert system
for automatic microservices identification using API similarity graph,”
Journal of Software: Evolution and Process (JSEP 2022), 2022.

22

[P11] I. Trabelsi, M. Abdellatif, A. Abubaker, N. Moha, S. Mosser,
S. Ebrahimi-Kahou, and Y.-G. Guéhéneuc, “From legacy to microser-
vices: A type-based approach for microservices identification using
machine learning and semantic analysis,” Journal of Software: Evolu-

tion and Process, vol. 35, p. e2503, 2023.
[P12] I. Trabelsi, N. Moha, Y.-G. Gueheneuc, and L. Geffard, “Magnet:

Method-Based Approach Using Graph Neural Network for Microser-
vices Identification,” 2024 IEEE 21st International Conference on

Software Architecture (ICSA), pp. 1–11, 2024.
[P13] I. Trabelsi, B. Popa, J. Pereyrol, P.-O. Beaulieu, and N. Moha, “Micro-

Matic: Fully Automated Microservices Identification Approach From
Monolithic Systems,” Proceedings of the ACM/IEEE 6th International

Workshop on Software Engineering Research & Practices for the

Internet of Things, 2024.
[P14] W. Lv, Q. Wang, P. Yang, Y. Ding, B. Yi, Z. Wang, and C. Lin,

“Microservice Deployment in Edge Computing Based on Deep Q
Learning,” IEEE Transactions on Parallel and Distributed Systems,
vol. 33, pp. 2968–2978, 2022.

[P15] S. A. Khan, M. Abdullah, W. Iqbal, M. A. Butt, F. Bukhari, and S.-U.
Hassan, “Automatic Migration-Enabled Dynamic Resource Manage-
ment for Containerized Workload,” IEEE Systems Journal, vol. 17, pp.
2378–2389, 2023.

[P16] C. Joseph, J. Martin, K. Chandrasekaran, and A. Kandasamy, “Fuzzy
Reinforcement Learning based Microservice Allocation in Cloud Com-
puting Environments,” TENCON 2019 - IEEE Region 10 Conference

(TENCON), pp. 1559–1563, 2019.
[P17] S. Luan and H. Shen, “Minimize Resource Cost for Containerized

Microservices Under SLO via ML-Enhanced Layered Queueing Net-
work Optimization,” 2024 14th International Conference on Cloud

Computing, Data Science & Engineering (Confluence), pp. 631–637,
2024.

[P18] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi, and
C. Delimitrou, “Seer: Leveraging Big Data to Navigate the Complexity
of Performance Debugging in Cloud Microservices,” Proceedings of

the Twenty-Fourth International Conference on Architectural Support

for Programming Languages and Operating Systems, pp. 19–33, 2019.
[P19] N. Shafi, M. Abdullah, W. Iqbal, A. Erradi, and F. Bukhari, “Cdas-

caler: a cost-effective dynamic autoscaling approach for containerized
microservices,” Cluster Computing - The Journal of Networks Software

Tools and Applications, 2024.
[P20] C. Song, M. Xu, K. Ye, H. Wu, S. Gill, R. Buyya, and C. Xu, “Chains-

Former: A Chain Latency-Aware Resource Provisioning Approach for
Microservices Cluster,” Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 14419, pp. 197–211, 2023.
[P21] Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou, “Enabling

Practical Cloud Performance Debugging with Unsupervised Learning,”
Operating Systems Review (ACM), vol. 56, pp. 34–41, 2022.

[P22] Z. Yang, P. Nguyen, H. Jin, and K. Nahrstedt, “MIRAS: Model-based
reinforcement learning for microservice resource allocation over scien-
tific workflows,” Proceedings - International Conference on Distributed

Computing Systems, pp. 122–132, 2019.
[P23] H. Zeng, T. Wang, A. Li, Y. Wu, and W. Zhang, “Topology-Aware

Self-Adaptive Resource Provisioning for Microservices,” 2023 IEEE

International Conference on Web Services (ICWS), pp. 28–35, 2023.
[P24] G. Tong, C. Meng, S. Song, M. Pan, and Y. Yu, “GMA: Graph Multi-

agent Microservice Autoscaling Algorithm in Edge-Cloud Environ-
ment,” 2023 IEEE International Conference on Web Services (ICWS),
pp. 393–404, 2023.

[P25] N. Li, Y. Tan, X. Wang, B. Li, and J. Luo, “SCORE: A Resource-
Efficient Microservice Orchestration Model Based on Spectral Cluster-
ing in Edge Computing,” Service-oriented Computing (ICSOC 2022),
vol. 13740, pp. 186–202, 2022.

[P26] K. Ray, A. Banerjee, and N. Narendra, “Learning-Based Microservice
Placement and Migration for Multi-Access Edge Computing,” IEEE

Transactions on Network and Service Management, vol. 17, pp. 1–10,
2023.

[P27] K.-H. Chow, U. Deshpande, S. Seshadri, and L. Liu, “DeepRest: Deep
Resource Estimation for Interactive Microservices,” EuroSys 2022 -

Proceedings of the 17th European Conference on Computer Systems,
pp. 181–198, 2022.

[P28] K. Shi, J. Li, Y. Liu, Y. Chang, and X. Li, “BSDG: Anomaly Detection
of Microservice Trace Based on Dual Graph Convolutional Neural
Network,” Service-oriented Computing (ICSOC 2022), vol. 13740, pp.
171–185, 2022.

[P29] C. Zhang, X. Peng, C. Sha, K. Zhang, Z. Fu, X. Wu, Q. Lin, and
D. Zhang, “DeepTraLog: Trace-Log Combined Microservice Anomaly

Detection through Graph-based Deep Learning,” 2022 IEEE/ACM 44th

International Conference on Software Engineering (ICSE), pp. 623–
634, 2022.

[P30] L. Chen, Q. Dang, M. Chen, B. Sun, C. Du, and Z. Lu, “BertHTLG:
Graph-Based Microservice Anomaly Detection Through Sentence-
Bert Enhancement,” in Web Information Systems and Applications.
Springer Nature Singapore, 2023, pp. 427–439.

[P31] Y. Song, R. Xin, P. Chen, R. Zhang, J. Chen, and Z. Zhao, “Au-
tonomous selection of the fault classification models for diagnosing
microservice applications,” Future Generation Computer Systems, vol.
153, pp. 326–339, 2024.

[P32] Y. Xu, Z. Qiu, H. Gao, X. Zhao, L. Wang, and R. Li, “Heteroge-
neous Data-Driven Failure Diagnosis for Microservice-Based Industrial
Clouds Towards Consumer Digital Ecosystems,” IEEE Transactions on

Consumer Electronics, pp. 1–1, 2023.
[P33] Y. Sun, Z. Lin, B. Shi, S. Zhang, S. Ma, P. Jin, Z. Zhong, L. Pan,

Y. Guo, and D. Pei, “Interpretable Failure Localization for Microservice
Systems Based on Graph Autoencoder,” ACM Transactions on Software

Engineering and Methodology, vol. 33, pp. 326–339, September 2024.
[P34] Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou, “Sage: Practical

and scalable ML-driven performance debugging in microservices,”
International Conference on Architectural Support for Programming

Languages and Operating Systems - ASPLOS, pp. 135–151, 2021.
[P35] J. Chou, E. Al-Masri, S. Kanzhelev, and H. Fattah, “Detecting Secu-

rity and Privacy Risks in Microservices End-to-End Communication
Using Neural Networks,” 2021 IEEE 4th International Conference on

Knowledge Innovation and Invention (ICKII), pp. 105–110, 2021.
[P36] A. Selmadji, A.-D. Seriai, H. L. Bouziane, R. Oumarou Mahamane,

P. Zaragoza, and C. Dony, “From Monolithic Architecture Style to
Microservice one Based on a Semi-Automatic Approach,” 2020 IEEE

International Conference on Software Architecture (ICSA), pp. 157–
168, 2020.

[P37] G. Morais, D. Bork, and M. Adda, “Towards an Ontology-driven
Approach to Model and Analyze Microservices Architectures,” Pro-

ceedings of the 13th International Conference on Management of

Digital EcoSystems (MEDES), pp. 79–86, 2021.
[P38] Q. Du, T. Xie, and Y. He, “Anomaly Detection and Diagnosis for

Container-Based Microservices with Performance Monitoring,” Lecture

Notes in Computer Science, pp. 560–572, 2018.
[P39] H. Kong, T. Li, J. Ge, L. Zhang, and L. Li, “Enhancing fault

localization in microservices systems through span-level using graph
convolutional networks,” Automated Software Engineering, 2024.

[P40] W. Santos, A. J. Sampaio, N. Rosa, and G. Cavalcanti, “Microservices
performance forecast using dynamic Multiple Predictor Systems,”
Engineering Applications of Artificial Intelligence, vol. 243, 2024.

[P41] J. Chen, F. Liu, J. Jiang, G. Zhong, D. Xu, Z. Tan, and S. Shi,
“TraceGra: A trace-based anomaly detection for microservice using
graph deep learning,” Comput. Commun., vol. 204, pp. 109–117, 2023.

[P42] M. Abdullah, W. Iqbal, A. Erradi, and F. Bukhari, “Learning Predictive
Autoscaling Policies for Cloud-Hosted Microservices Using Trace-
Driven Modeling,” 2019 IEEE International Conference on Cloud

Computing Technology and Science (CloudCom), pp. 119–126, 2019.
[P43] M. Daoud, A. El Mezouari, N. Faci, D. Benslimane, Z. Maamar, and

A. El Fazziki, “Towards an Automatic Identification of Microservices
from Business Processes,” 2020 IEEE 29th International Conference

on Enabling Technologies: Infrastructure for Collaborative Enterprises

(WETICE), pp. 42–47, 2020.
[P44] F. Vera-Rivera, E. Puerto, H. Astudillo, and C. Gaona, “Microservices

Backlog-A Genetic Programming Technique for Identification and
Evaluation of Microservices From User Stories,” IEEE Access, vol. 9,
pp. 117 178–117 203, 2021.

[P45] D. Bajaj, U. Bharti, I. Gupta, P. Gupta, and A. Yadav, “GTMi-
cro—microservice identification approach based on deep NLP trans-
former model for greenfield developments,” International Journal of

Information Technology, 2024.
[P46] M. Abdullah, W. Iqbal, and A. Erradi, “Unsupervised learning approach

for web application auto-decomposition into microservices,” Journal of

Systems and Software, vol. 151, pp. 243–257, 2019.
[P47] O. Al-Debagy and P. Martinek, “A new decomposition method for de-

signing microservices,” Periodica Polytechnica Electrical Engineering

and Computer Science, vol. 63, pp. 274–281, 2019.
[P48] W. Lv, P. Yang, T. Zheng, C. Lin, Z. Wang, M. Deng, and Q. Wang,

“Graph-Reinforcement-Learning-Based Dependency-Aware Microser-
vice Deployment in Edge Computing,” IEEE Internet of Things Jour-

nal, vol. 11, pp. 1604–1615, 2024.
[P49] T. Rathod, C. Joseph, and J. Martin, “Improving Industry 4.0 Readi-

ness: Monolith Application Refactoring using Graph Attention Net-

23

works,” Proceedings - 23rd IEEE/ACM International Symposium on

Cluster, Cloud and Internet Computing Workshops, CCGridW 2023,
pp. 223–230, 2023.

[P50] Y. Romani, O. Tibermacine, and C. Tibermacine, “Towards Migrating
Legacy Software Systems to Microservice-based Architectures: a Data-
Centric Process for Microservice Identification,” 2022 IEEE 19th

International Conference on Software Architecture Companion (ICSA-

C), pp. 15–19, 2022.

[P51] L. Cao and C. Zhang, “Implementation of Domain-oriented Microser-
vices Decomposition based on Node-attributed Network,” Proceedings

of the 2022 11th International Conference on Software and Computer

Applications, pp. 136–142, 2022.

[P52] R. Li, M. Du, H. Chang, S. Mukherjee, and E. Eide, “Deepstitch: Deep
Learning for Cross-Layer Stitching in Microservices,” Proceedings of

the 2020 6th International Workshop on Container Technologies and

Container Clouds, pp. 25–30, 2021.

[P53] L. Chen, M. Guang, J. Wang, and C. Yan, “Dynamic and static feature-
aware microservices decomposition via graph neural networks,” 2023

Knowledge Science, Engineering and Management (KSEM), 2023.

[P54] B. Liu, J. Lu, F. Zhang, W. Zhang, and M. Wang, “Method of
Microservices Division for Complex Business Management System
Based on Dual Clustering,” 2020 5th International Conference on

Mechanical, Control and Computer Engineering (ICMCCE), pp. 2259–
2268, 2020.

[P55] K. Sooksatra, R. Maharjan, and T. Cerny, “Monolith to Microservices:
VAE-Based GNN Approach with Duplication Consideration,” 2022

IEEE International Conference on Service-Oriented System Engineer-

ing (SOSE), pp. 1–10, 2022.

[P56] O. Al-Debagy and P. Martinek, “A microservice decomposition method
through using distributed representation of source code,” Scalable

Computing: Practice and Experience, vol. 22, no. 1, pp. 39–52, 2021.

[P57] O. A. Sellami K, Saied MA, “A hierarchical dbscan method for
extracting microservices from monolithic applications,” Proceedings

of the 26th International Conference on Evaluation and Assessment in

Software Engineering, pp. 201–210, 2022.

[P58] A. Mathai, S. Bandyopadhyay, U. Desai, and S. Tamilselvam, “Mono-
lith to Microservices: Representing Application Software through Het-
erogeneous Graph Neural Network,” Proceedings of the Thirty-First

International Joint Conference on Artificial Intelligence (IJCAI-22),
pp. 3905–3911, 2022.

[P59] S. Shahini and H. Momeni, “Autoencoder-based Anomaly Detection in
Microservices using Distributed Tracing,” 2024 20th CSI International

Symposium on Artificial Intelligence and Signal Processing (AISP),
2024.

[P60] R. Tan and Z. Li, “MAAD: A Distributed Anomaly Detection Archi-
tecture for Microservices Systems,” 38th IEEE International Parallel

& Distributed Processing Symposium (IPDPS), 2024.

[P61] V. Nitin, S. Asthana, B. Ray, and R. Krishna, “CARGO: AI-Guided
Dependency Analysis for Migrating Monolithic Applications to Mi-
croservices Architecture,” Proceedings of the 37th IEEE/ACM Inter-

national Conference on Automated Software Engineering, ASE 2022,
2022.

[P62] L. Qian, J. Li, X. He, R. Gu, J. Shao, and Y. Lu, “Microservice
extraction using graph deep clustering based on dual view fusion,”
Information and Software Technology, vol. 158, 2023.

[P63] M. Saidi, A. Tissaoui, and S. Faiz, “A ddd approach towards automatic
migration to microservices,” in 2023 IEEE International Conference on

Advanced Systems and Emergent Technologies (IC ASET), 2023, pp.
01–06.

[P64] J. Liu and C. Zhang, “Migrating Monolith System to Microservices
with Directed Graph Attention Neural Network,” Third International

Conference on High Performance Computing and Communication

Engineering (HPCCE 2023), vol. 13073, 2024.

[P65] L. Nunes, N. Santos, and A. Rito Silva, “From a Monolith to a
Microservices Architecture: An Approach Based on Transactional
Contexts,” Lecture Notes in Computer Science, vol. 11377, pp. 37–
52, 2019.

[P66] D. Bajaj, U. Bharti, A. Goel, and S. C. Gupta, “Partial migration for
re-architecting a cloud native monolithic application into microservices
and FaaS,” pp. 111–124, 2020.

[P67] A. K. Kalia, J. Xiao, C. Lin, S. Sinha, J. Rofrano, M. Vukovic,
and D. Banerjee, “Mono2Micro: an AI-based toolchain for evolving
monolithic enterprise applications to a microservice architecture,”
Proceedings of the 28th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Soft-

ware Engineering, 2020.

[P68] Y. Cai, B. Han, J. Su, and X. Wang, “TraceModel: An Automatic
Anomaly Detection and Root Cause Localization Framework for Mi-
croservice Systems,” 2021 17th International Conference on Mobility,

Sensing and Networking (MSN), pp. 512–519, 2021.
[P69] R. Chen, J. Ren, L. Wang, Y. Pu, K. Yang, and W. Wu, “MicroEGRCL:

An Edge-Attention-Based Graph Neural Network Approach for Root
Cause Localization in Microservice Systems,” Service-Oriented Com-

puting: 20th International Conference, ICSOC 2022, vol. 13747, pp.
264–272, 2022.

[P70] M. Dehghani, S. Kolahdouz-Rahimi, M. Tisi, and D. Tamzalit, “Facil-
itating the migration to the microservice architecture via model-driven
reverse engineering and reinforcement learning,” Software and Systems

Modeling, vol. 21, pp. 1115–1133, 2022.
[P71] U. Desai, S. Bandyopadhyay, and S. Tamilselvam, “Graph Neural

Network to Dilute Outliers for Refactoring Monolith Application,”
Thirty-fifth AAAI Conference on Artificial Intelligence, Thirty-third

Conference on Innovative Applications of Artificial Intelligence and

the Eleventh Symposium on Educational Advances in Artificial Intelli-

gence, vol. 35, pp. 72–80, 2021.
[P72] O. Al-Debagy and P. Martinek, “Dependencies-based microservices de-

composition method,” Scalable Computing: Practice and Experience,
vol. 22, pp. 39–52, 2021.

[P73] X. Liang, L. Li, and H. Peng, “Unsupervised Microservice Log
Anomaly Detection Method Based on Graph Neural Network,” Inter-

national Conference on Swarm Intelligence, 2024.
[P74] K. Zhang, C. Zhang, X. Peng, and C. Sha, “PUTraceAD: Trace

Anomaly Detection with Partial Labels based on GNN and PU Learn-
ing,” 2022 IEEE 33rd International Symposium on Software Reliability

Engineering (ISSRE), pp. 239–250, 2022.
[P75] M. Li, D. Tang, Z. Wen, et al., “Microservice anomaly detection

based on tracing data using semi-supervised learning,” International

Conference on Artificial Intelligence and Big Data, pp. 38–44, 2021.
[P76] J. Wang, Y. Li, Q. Qi, Y. Lu, and B. Wu, “Multilayered Fault Detection

and Localization With Transformer for Microservice Systems,” IEEE

Transactions on Reliability, 2024.
[P77] J. Huang, Y. Yang, H. Yu, J. Li, and X. Zheng, “Twin Graph-

Based Anomaly Detection via Attentive Multi-Modal Learning for
Microservice System,” 2023 38th IEEE/ACM International Conference

on Automated Software Engineering (ASE), pp. 66–78, 2023.
[P78] S. Ding, Y. E, J. Zhang, L. Li, L. Zhang, and J. Ge, “Trace Anomaly

Detection for Microservice Systems via Graph-based Semi-supervised
Learning,” 2024 27th International Conference on Computer Supported

Cooperative Work in Design (CSCWD), 2024.
[P79] P. Liu, H. Xu, Q. Ouyang, R. Jiao, Z. Chen, S. Zhang, J. Yang,

L. Mo, J. Zeng, W. Xue, and D. Pei, “Unsupervised Detection of
Microservice Trace Anomalies through Service-Level Deep Bayesian
Networks,” 2020 IEEE 31st International Symposium on Software

Reliability Engineering (ISSRE), pp. 48–58, 2020.
[P80] T. Stojanovic and S. D. Lazarević, “The application of ChatGPT for

identification of microservices,” E-business technologies conference

proceedings, vol. 3, no. 1, pp. 99–105, 2023.
[P81] S. Eski and F. Buzluca, “An automatic extraction approach: transition

to microservices architecture from monolithic application,” Proceed-

ings of the 19th International Conference on Agile Software Develop-

ment: Companion, 2018.

APPENDIX

METHODOLOGY DETAILS

Inclusion Criteria and Exclusion Criteria

Primary Studies (PSs) list

Table VIII show the list of the selected primary studies.

Databases for Selected PSs

Figure 9 shows the databases for selected PSs.

DEFINITIONS OF KEY TERMS FOR RQ1

Migration Phases

• Pre-migration: Focuses on evaluating the current ap-

proaches, methods, and tools used in the legacy system. This

24

TABLE VII: Examples of Excluded Studies Based on Specific Criteria

Criterion Excluded Study Justification

IC7: The study provides enough
information to answer at least 3
RQs

[45] The study provided only a high-level summary of its approach,
without sufficient technical or evaluation detail. Only two research
(RQ1 and RQ2) questions could be addressed based on the
available content.

IC8: The study has its full text
available online

[46] The publication metadata was available, but access to the full
article text was missing, preventing proper assessment.

IC9: The study provides sufficient
migration details

[47] The paper outlines decomposition patterns and incremental mi-
gration steps but omits how evaluated and ML techniques used

IC10: The study uses an automated
or semi-automated migration ap-
proach

[48] The study proposed architectural guidelines but did not implement
or evaluate any tool or algorithm to automate the migration
process.

EC5: The study does not provide
enough details

[47] The paper briefly mentioned the use of ML for migration but did
not describe the technique, inputs, or outputs, making it unsuitable
for analysis.

EC6: The study does not provide
an automated or semi-automated
migration approach

[48] The migration approach was based entirely on manual analysis and
refactoring decisions by software architects, with no automation.

10

21

37

3

6

1
3

0

5

10

15

20

25

30

35

40

ACM

Com
pendex

IE
EE X

plo
re

Sc
ie

nce
D
ire

ct

Sc
opus

W
eb o

f S
ci

ence

W
ile

y

Fig. 9: Databases for Selected PSs

phase also involves planning the migration by identifying

suitable strategies, defining objectives, and outlining the

steps needed to ensure a smooth transition.

• Identification: Defines the boundaries of prospective mi-

croservices. This involves detecting functional modules,

mapping dependencies, and clustering components with

business requirements.

• Packaging: Encapsulates the identified components into

functional microservices. This phase includes defining ser-

vice interfaces, managing dependencies, and generating

missing components.

• Deployment: Implements and configures the necessary run-

time infrastructure to host microservices, including con-

tainerization, service orchestration, network configuration,

and integration with legacy or third-party systems.

• Monitoring: Ensures the reliability and efficiency of the

microservices-based system post-migration. This phase in-

volves continuous performance tracking, anomaly detection,

and dynamic resource management to meet changing work-

load demands.

Automated Tasks

• Pre-migration Tasks:

– Designing microservices: Assists in planning microser-

vice architecture by analyzing legacy systems.

– Predicting success rates of migration: Uses predictive

models to evaluate potential migration outcomes.

• Identification Tasks:

– Boundary identification: Detects functional boundaries

within monolithic systems.

– Clustering: Groups related components or services based

on structural, semantic, or performance similarity using

unsupervised learning.

– Microservices identification: Automates the process of

determining candidate microservices.

• Deployment Tasks:

– Automated deployment: Automates the deployment of

microservices into production environments.

– Resource management: Allocates and monitors comput-

ing resources such as CPU, memory, and I/O bandwidth

across microservices during runtime to optimize cost-

efficiency and performance.

– Resource allocation: Dynamically allocates resources to

microservices based on workload demands.

– Microservice autoscaling: Dynamically adjusts the num-

ber of microservice instances or resource allocations

based on performance indicators such as CPU load,

request latency, or throughput, in order to maintain

service-level objectives and system responsiveness.

– Microservice orchestration: Manages dependencies and

interactions between microservices.

– Microservice placement: Decides optimal placements for

microservices within the infrastructure.

– Resource estimation: Estimates the resource needs of

microservices to optimize deployment strategies.

• Monitoring Tasks:

– Anomaly detection: Identifies abnormal behaviors or

performance issues in microservices.

– Performance analysis: Evaluates the performance met-

rics of deployed microservices.

– Detection of failure types: Classifies failure types to

facilitate troubleshooting.

– Fault diagnosis: Diagnoses root causes of failures to

enable faster resolution.

25

TABLE VIII: List of Selected PSs

Primary Study (PS) Phase Ref.

A DDD Approach Towards Automatic Migration to Microservices I [P63]
A Hierarchical DBSCAN Method for Extracting Microservices from Monolithic Applications I [P57]
A microservice decomposition method using a distributed representation of source code I [P56]
A Microservices Identification Method Based on Spectral Clustering for Industrial Legacy Systems I [P5]
A multi-model based microservices identification approach I [P6]
A New Decomposition Method for Designing Microservices I [P47]
An Automatic Extraction Approach: Transition to Microservices Architecture from Monolithic Application I [P81]
Anomaly Detection and Diagnosis for Container-Based Microservices with Performance Monitoring M [P38]
Autoencoder-Based Anomaly Detection in Microservices Using Distributed Tracing M [P59]
Automatic Microservices Identification Across Structural Dependency I [P7]
Automatic Microservices Identification from a Set of Business Processes I [P8]
Automatic Migration-Enabled Dynamic Resource Management for Containerized Workload D [P15]
Autonomous Selection of the Fault Classification Models for Diagnosing Microservice Applications M [P31]
BertHTLG: Graph-Based Microservice Anomaly Detection Through Sentence-BERT Enhancement M [P30]
BSDG: Anomaly Detection of Microservice Trace Based on Dual Graph Convolutional Neural Network M [P28]
CARGO: AI-Guided Dependency Analysis for Migrating Monolithic Applications to Microservices Architecture I [P61]
Cdascaler: A Cost-Effective Dynamic Autoscaling Approach for Containerized Microservices D [P19]
ChainsFormer: A Chain Latency-Aware Resource Provisioning Approach for Microservices Cluster D [P20]
Code Vectorization and Sequence of Accesses Strategies for Monolith Microservices Identification I [P9]
DeepRest: Deep Resource Estimation for Interactive Microservices D [P27]
Deepstitch: Deep Learning for Cross-Layer Stitching in Microservices M [P52]
DeepTraLog: Trace-Log Combined Microservice Anomaly Detection through Graph-based Deep Learning M [P29]
Dependencies-Based Microservices Decomposition Method I [P72]
Detecting Security and Privacy Risks in Microservices End-to-End Communication Using Neural Networks M [P35]
Dynamic and Static Feature-Aware Microservices Decomposition via Graph Neural Networks I [P53]
Enabling Practical Cloud Performance Debugging with Unsupervised Learning M [P21]
Enhancing Fault Localization in Microservices Systems Through Span-Level Using Graph Convolutional Networks M [P39]
Expert System for Automatic Microservices Identification Using API Similarity Graph I [P10]
Extracting Candidates of Microservices from Monolithic Application Code I [P4]
Facilitating the Migration to the Microservice Architecture via Model-Driven Reverse Engineering and RL I [P70]
From a Monolith to a Microservices Architecture: An Approach Based on Transactional Contexts I [P65]
From Legacy2Microservices: A Type-Based Approach for Microservices Identification Using ML and Semantic Analysis I [P11]
From Monolithic Architecture Style to Microservice One Based on a Semi-Automatic Approach I [P36]
Fuzzy Reinforcement Learning Based Microservice Allocation in Cloud Computing Environments D [P16]
GMA: Graph Multi-Agent Microservice Autoscaling Algorithm in Edge-Cloud Environment M [P24]
Graph Neural Network to Dilute Outliers for Refactoring Monolith Application I [P71]
Graph-Reinforcement-Learning-Based Dependency-Aware Microservice Deployment in Edge Computing D [P48]
GTMicro—Microservice Identification Approach Based on Deep NLP Transformer Model for Greenfield Developments I [P45]
Heterogeneous Data-Driven Failure Diagnosis for Microservice Industrial Clouds Towards Consumer Digital Ecosystems M [P32]
High-Performance Computing-Enabled Probabilistic Framework for Migration from Monolith2Microservices Using GAs P [P2]
Implementation of Domain-Oriented Microservices Decomposition Based on Node-Attributed Network I [P51]
Improving Industry 4.0 Readiness: Monolith Application Refactoring Using Graph Attention Networks I [P49]
Interpretable Failure Localization for Microservice Systems Based on Graph Autoencoder M [P33]
Learning Predictive Autoscaling Policies for Cloud-Hosted Microservices Using Trace-Driven Modeling D [P42]
Learning-Based Microservice Placement and Migration for Multi-Access Edge Computing D [P26]
MAAD: A Distributed Anomaly Detection Architecture for Microservices Systems M [P60]
Magnet: Method-Based Approach Using Graph Neural Network for Microservices Identification I [P12]
Method of Microservices Division for Complex Business Management System Based on Dual Clustering I [P54]
Microegrcl: An Edge-Attention-Based Graph Neural Network Approach for Root Cause Localization in Microservice Systems M [P69]
MicroMatic: Fully Automated Microservices Identification Approach From Monolithic Systems I [P13]
Microservice Anomaly Detection Based on Tracing Data Using Semi-Supervised Learning M [P75]
Microservice Deployment in Edge Computing Based on Deep Q Learning D [P14]
Microservice Extraction Using Graph Deep Clustering Based on Dual View Fusion I [P62]
Microservices Backlog: Genetic Programming Technique for Identification and Evaluation of Microservices From User Stories I [P44]
Microservices Performance Forecast Using Dynamic Multiple Predictor Systems M [P40]
Migrating Monolith System to Microservices with Directed Graph Attention Neural Network I [P64]
Minimize Cost for Containerized Microservices Under SLO via ML-Enhanced Layered Queuing Network Optimization M [P17]
MIRAS: Model-Based Reinforcement Learning for Microservice Resource Allocation Over Scientific Workflows D [P22]
Mono2Micro: An AI-Based Toolchain for Evolving Monolithic Enterprise Applications to a Microservice Architecture I [P67]
Monolith to Microservices: Representing Application Software Through Heterogeneous Graph Neural Network I [P58]
Monolith to Microservices: VAE-Based GNN Approach with Duplication Consideration I [P55]
Multilayered Fault Detection and Localization With Transformer for Microservice Systems M [P76]
Partial Migration for Re-Architecting a Cloud Native Monolithic Application into Microservices and FaaS I [P66]
PUTraceAD: Trace Anomaly Detection with Partial Labels Based on GNN and PU Learning M [P74]
Sage: Practical and Scalable ML-Driven Performance Debugging in Microservices M [P34]
SCORE: A Resource-Efficient Microservice Orchestration Model Based on Spectral Clustering in Edge Computing D [P25]
Seer: Leveraging Big Data to Navigate the Complexity of Performance Debugging in Cloud Microservices M [P18]
Service Cutter: A Systematic Approach to Service Decomposition I [P3]
The Application of ChatGPT for Identification of Microservices I [P80]
Topology-Aware Self-Adaptive Resource Provisioning for Microservices D [P23]
Towards an Automatic Identification of Microservices from Business Processes I [P43]
Towards an Ontology-Driven Approach to Model and Analyze Microservices Architectures I [P37]
Towards Migrating Legacy2Microservice-Based Architectures: A Data-Centric Process for Microservice Identification I [P50]
Trace Anomaly Detection for Microservice Systems via Graph-Based Semi-Supervised Learning M [P78]
Tracegra: A Trace-Based Anomaly Detection for Microservice Using Graph Deep Learning M [P41]
TraceModel: An Automatic Anomaly Detection and Root Cause Localization Framework for Microservice Systems M [P68]
Twin Graph-Based Anomaly Detection via Attentive Multi-Modal Learning for Microservice Systems M [P77]
Unsupervised Detection of Microservice Trace Anomalies through Service-Level Deep Bayesian Networks M [P79]
Unsupervised Learning Approach for Web Application Auto-Decomposition into Microservices I [P46]
Unsupervised Microservice Log Anomaly Detection Method Based on Graph Neural Network M [P73]
Visualization Tool for Designing Microservices with the Monolith-First Approach P [P1]

✺ P: Pre-migration; I: Identification; D: Deployment; M: Monitoring.

26

– Root cause analysis: Pinpoints the underlying issues

causing anomalies or failures.

– Privacy risks detection: Identifies potential privacy con-

cerns in microservice interactions.

– Sanity check: Automated validations to confirm system

states and outputs remain within expected bounds.

DEFINITIONS OF KEY TERMS FOR RQ2

Input Types

• Domain Artifacts: High-level inputs that capture business

and functional requirements of the system. These include:

– API Documentation: Details about available APIs and

their interactions, often used to modularize microser-

vices.

– QoS Constraints: Quality of Service parameters (e.g.,

response time, availability) that must be maintained

during migration.

– Architecture Recommendations: Expert suggestions

for migration strategies and component separation.

– Functional Description: High-level descriptions of sys-

tem functionalities, often captured in ontologies.

• Runtime Artifacts: Inputs derived from the system’s run-

time behavior, including:

– Resource Metrics: Data on resource consumption (e.g.,

CPU, memory usage).

– Monitoring Metrics: Data collected from system mon-

itoring tools.

– Performance Metrics: Measurements of system perfor-

mance (e.g., response time, latency).

– Trace Logs: Detailed records of system execution flow.

– Workloads: Descriptions of system usage scenarios and

patterns.

• Model Artifacts: Abstract representations of the system,

including:

– Business Processes: Workflows and processes supported

by the system.

– UML Diagrams: Visual representations of system de-

sign.

– User Stories: Descriptions of functionalities from the

user’s perspective.

• Source Artifacts: Inputs related to the actual software and

its configuration, including:

– Source Code: Implementation of the system, including

modules and components.

– Configuration Files: Settings required for system oper-

ation.

– Data Files: Files used or generated by the system for

operations.

• Technical Artifacts: Supporting information for system

operation and migration planning, including:

– Server Information: Details about the infrastructure

supporting the system.

Input Granularity

• Application Level: Examines inputs at a higher level of

abstraction, focusing on files, APIs, and use cases.

– Use Case: Scenarios describing user interactions with

the application.

– Files: Application files (e.g., configuration or resource

files).

– URI: Resources or endpoints within the application.

– API: Application Programming Interfaces for interacting

with functionalities.

• System Level: Investigates components and interactions

within the larger system architecture.

– Services: Functional units delivering specific capabili-

ties.

– Microservices: Independent units designed for specific

tasks.

– Node: Individual units in distributed systems (e.g.,

servers, containers).

– Component: A logical grouping of code units (e.g.,

classes, modules) within a larger architectural unit.

– Performance Metrics: System-wide measurements

(e.g., throughput, latency).

• Process Level: Examines activities and operations repre-

senting workflows within the system.

– Operation: Specific tasks or actions performed within

the system.

– Activity: Groups of operations into higher-level work-

flows.

• Code Level: Focuses on the smallest units of the software

system, such as classes and methods.

– Class: Foundational building blocks of object-oriented

programming.

– Method: Specific functionalities or operations within a

class.

• Data Level: Focuses on stored information supporting data

modeling and analysis.

– Table: Structured data collections in databases.

– Entity: Logical representations of real-world objects or

concepts.

Data Sources

• Open Source: Publicly available datasets derived from open

projects, repositories, or collaborative platforms.

• Real World: Data collected directly from operational sys-

tems or real-life environments.

• Synthetic: Data generated to simulate real-world scenarios

when real-world data is scarce or sensitive.

Preprocessing Tasks

• Data Extraction: Extracts relevant information from raw

data sources (e.g., logs, traces).

– Extraction of Operation and Dependency Informa-

tion: Captures workflows and dependencies.

– Parsing Logs and Traces: Extracts structured informa-

tion from logs and traces.

– Feature Extraction: Identifies meaningful features for

analysis.

– Data Collection: Aggregates data from diverse sources.

• Data Cleaning: Improves data quality by removing noise

and inconsistencies.

27

– Noise Reduction: Eliminates irrelevant or redundant

information.

– Normalization: Scales and transforms data for unifor-

mity.

• Code Analysis: Analyzes the structural and semantic as-

pects of the codebase.

– Semantic Analysis: Examines the meaning and func-

tionality of code components.

– Structural Analysis: Examines relationships and hier-

archies within the codebase.

• Dependency Modeling: Structures and transforms data to

model dependencies between components.

– Vectorization and Embedding: Converts textual or

categorical data into numerical formats.

– Dependency Graph Generation: Creates graphical rep-

resentations of component dependencies.

– Modeling and Task Structuring: Structures data for

specific migration tasks.

– Matrix Structuring: Converts dependencies into matrix

formats for computational analysis.

– Graph Transformation: Transforms dependency graphs

to highlight relevant relationships.

DEFINITIONS OF KEY TERMS FOR RQ3

Machine Learning Models

1) Classical Machine Learning:

• Support Vector Machines (SVM): Used to classify

components based on their attributes, facilitating precise

service decomposition.

• Random Forest: An ensemble method effective in iden-

tifying service boundaries and dependency classifications

by aggregating interaction patterns.

• Naive Bayes: Useful for analysing textual data, such as

code comments and documentation, to extract insights

about service functionalities and dependencies.

• k-Nearest Neighbors (kNN): Classifies components

based on proximity in the feature space, aiding in op-

timization by grouping related entities.

• Logistic Regression: Estimates the probability of a com-

ponent being part of a microservice based on extracted

features.

• Decision Trees: Provide interpretable paths for classi-

fying components based on specified rules, used for

functionality and interaction-based classification.

• Multilayer Perceptron (MLP): A simple neural network

model applied to learn complex patterns for classification

tasks.

2) Deep Learning:

• Autoencoders: Neural networks that learn to compress

input data into a lower-dimensional space (encoder) and

then reconstruct the original data (decoder).

• Variational Autoencoders (VAE): Extend autoencoders

by modelling the latent space probabilistically, allowing

for the generation of new data similar to the training set.

• Convolutional Autoencoders (CAE): Use convolutional

layers to process images, effectively capturing spatial

features.

• Recurrent Networks: Process sequential data by main-

taining memory of previous inputs.

• Long Short-Term Memory (LSTM): Addresses the

vanishing gradient problem in RNNs, allowing them to

capture long-range dependencies in sequences.

• Gated Recurrent Units (GRU): Simplify LSTMs by

combining forget and input gates, making them efficient

for sequential tasks.

• Transformers: Use self-attention mechanisms to process

sequences, enabling parallelisation and improved training

speed.

• BERT: Learns word context by considering both left and

right contexts, excelling in tasks like sentiment analysis.

• Sentence-BERT (SBERT): A variation of BERT opti-

mized for sentence-level tasks.

• CodeBERT: A transformer model designed for leverag-

ing similarities in programming languages.

• ChatGPT: Based on the GPT architecture, supports de-

velopers in understanding and refactoring legacy systems.

3) Graph-Based Models:

• Graph Convolutional Networks (GCN): Extend CNNs

to graph data by aggregating features from neighbouring

nodes.

• Graph Attention Networks (GAT): Incorporate atten-

tion mechanisms into graph learning, improving repre-

sentation learning.

• Graph Isomorphism Networks (GIN): Capture graph

structural properties for effective representation learning.

• Relational GCN (RGCN): Extends GCNs to multi-

relational graphs, handling various types of relationships

among entities.

• Variational Graph Autoencoders (VGAE): Combine

GCNs with variational inference to learn latent represen-

tations of graphs.

4) Reinforcement Learning:

• Fuzzy Q-Learning (FQL): Combines traditional Q-

learning with fuzzy logic principles to handle uncertainty.

• Deep Q-Learning (DQL): Combines traditional Q-

learning with deep neural networks for handling complex

environments.

• Deep Deterministic Policy Gradient (DDPG): A model-

free, off-policy reinforcement learning algorithm for con-

tinuous action spaces.

• Multi-Agent Deep Deterministic Policy Gradient

(MADDPG): Extends DDPG for multi-agent environ-

ments.

Learning Paradigms

• Supervised Learning: Trains models on labeled datasets,

primarily for tasks such as anomaly detection and re-

source optimization.

• Unsupervised Learning: Identifies patterns and clusters

in datasets without explicit labels, widely applied in

microservices identification.

• Semi-Supervised Learning: Combines a small amount

of labeled data with a larger pool of unlabeled data to

enhance learning accuracy.

28

• Self-Supervised Learning: Generates pseudo-labels

from raw data, allowing models to learn meaningful

representations without requiring explicit labels.

• Reinforcement Learning: Trains agents to make sequen-

tial decisions by interacting with an environment and

optimizing cumulative rewards.

Selected Features

5) Structural Features:

• Class Dependencies: Include inheritance, composition,

and association relationships used to analyze modularity.

• Method Calls: Reveal functional overlaps and interaction

patterns between components.

• Data Dependencies: Show how data flows within a

system and between its components.

• Transactional Dependencies: Identify sequences of op-

erations that must occur together.

• Call Graph Dependencies: Capture invocation relation-

ships between methods across components.

• Graph-Based Analysis: Uses graph structures to analyse

dependencies in microservice architectures.

• Control Dependencies: Highlight the logical flow of

control within a system.

6) Behavioral Features:

• Invocation Paths: Represent the sequence of method

calls during program execution.

• Transactional Similarities: Refer to repeated patterns of

operations or interactions between components.

• Response Times: Measure the duration taken by a system

to respond to a request.

• Log Events: Capture system activities for monitoring,

debugging, and anomaly detection.

• Contextual Log Entries: Enhance log data with addi-

tional information.

• Event Frequency: Tracks the number of times specific

events occur.

• Timestamps: Record the exact time of events.

• Temporal Patterns: Identify time-based trends in system

behavior.

• Fault Patterns: Describe recurring errors or failures

within the system.

7) Performance Features:

• CPU Usage: Tracks the percentage of processor time

consumed by the system.

• Memory Usage: Measures the amount of RAM utilized.

• Network Traffic: Captures the volume of data exchanged

between services.

• Response Time: Measures how quickly a system or

service responds to requests.

• Availability: Measures the uptime or accessibility of a

system or service.

• Reliability: Reflects a system’s ability to perform without

failure.

• Compliance: Ensures that the system adheres to prede-

fined performance standards.

8) Semantic Features:

• Semantic Embeddings: Represent components as nu-

merical vectors based on their contextual meaning.

• Function Names: Provide a high-level description of a

method’s purpose.

• Method Embeddings: Encode methods as vectors, cap-

turing their functionality and relationships.

• API Descriptions: Provide semantic information about

system components.

• Business Logic: Captures the operational rules and pro-

cesses that define system functionality.

DEFINITIONS OF KEY TERMS FOR RQ4

Classification and Prediction Metrics

• Precision: Measures the accuracy of positive predictions.

• Recall: Assesses the model’s ability to identify all rele-

vant instances.

• F1-Score: Combines precision and recall for a balanced

measure.

• Accuracy: Represents the overall correctness of predic-

tions.

• AUC: Evaluates the quality of binary classification mod-

els.

• MCC: Measures the quality of binary classifications,

considering true and false positives/negatives.

Clustering Metrics

• Dunn Index: Measures the separation between clusters.

• Silhouette Score: Evaluates the similarity of objects

within their cluster.

• Newman-Girvan Modularity: Assesses the strength of

network division into clusters.

• Non-Extreme Distribution: Ensures balanced cluster

sizes.

• Maximum Cluster Size: Limits the largest cluster size

to avoid granularity issues.

• Number of Singleton Clusters: Counts clusters with a

single element.

System Behavior Metrics

• Response Time: The time taken for the system to re-

spond to a request.

• Resource Utilization: Measures the effectiveness of re-

source use.

• Energy Consumption: Assesses the total energy required

for operations.

• SLA Violation Rate: The percentage of time a system

fails to meet SLA obligations.

• Scalability: The system’s capacity to maintain or improve

performance under increased workload.

Software Design Metrics

• Cohesion: Evaluates the relatedness of functionalities

within a service.

• Coupling: Measures dependencies between services.

29

• Granularity Metric: Evaluates service size and scope.

• Structural Modularity: Measures the degree of system

decomposition into independent components.

• Cognitive Complexity: Assesses code understandability

for developers.

Developer-Centric Metrics

• Developer Validation: Assesses developer feedback on

migrated services.

• Closeness to Manual Expert Analysis: Compares auto-

mated classifications to expert evaluations.

	Introduction
	Related Work
	Research Method
	Research Questions (RQs)
	Search Query
	Studies Selection
	Databases Identification
	Duplicates Removal
	Screening
	Eligibility Assessment

	Snowballing
	Quality Assessment
	Data Extraction and Analysis

	Overview of the Selected Literature
	Publication Trends
	Distribution of PSs by Type
	Publication Venue
	Databases for Selected PSs

	Migration Phases Automated by ML (RQ1)
	Pre-migration
	Identification
	Packaging
	Deployment
	Monitoring

	Inputs used by ML migration approaches(RQ2)
	Input Types and Their Role in Migration
	Domain Artifacts
	Runtime Artifacts
	Model Artifacts
	Source Artifacts
	Technical Artifacts

	Input Granularity
	Data Sources
	Preprocessing Tasks

	ML approaches applied by researchers (RQ3)
	Models
	Classical Machine Learning
	Graph-Based Models
	Deep Learning
	Reinforcement Learning

	Learning paradigm
	Selected Features

	evaluation of ML approaches (RQ4)
	Evaluation Metrics
	Classification and Prediction Metrics
	Clustering Metrics
	System Behavior Metrics
	Software Design Metrics
	Developer-Centric Metrics

	Benchmarking
	Direct Method Comparisons
	Evolutionary Method Comparisons

	Success Criteria
	Technical Performance Metrics
	Outcome Alignment with Standards and Baselines
	Structural Quality
	System Effectiveness and Adaptability
	Functional and Domain-Specific Success

	Tool Types and Availability
	Tool Types
	Tool Availability

	Challenges in using ML approaches (RQ5)
	Technical Complexities
	Data Quality and Availability
	Scalability Concerns
	Integration Complexities
	Specialized Skills and Resource Requirements

	Discussion
	Phases
	Input
	Approaches
	Evaluation
	Cross-Dimensions Analysis
	Recommendations for Researchers and Practitioners

	Threats to Validity
	Conclusion
	References
	Selected Primary Studies (PSs)
	Appendix
	Classical Machine Learning
	Deep Learning
	Graph-Based Models
	Reinforcement Learning
	Structural Features
	Behavioral Features
	Performance Features
	Semantic Features

